• Title/Summary/Keyword: Warm Press Forming

Search Result 21, Processing Time 0.025 seconds

Comparison of Warm Deep Drawability of Stainless Steel Sheet Between Crank Press and Hydraulic Press (크랭크 프레스와 유압 프레스에서 스테인리스 강판의 온간 드로잉성 비교)

  • Kim, Jong-Ho;Choi, Chi-Soo;Na, Kyoung-Hoan
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.345-352
    • /
    • 1995
  • Warm deep drawing for optimum forming conditions to give the maximum drawing depth is investigated and compared with the results from experiments performed at room temperature. Experiments which draw square cups of STS 304 stainless steel sheet under the constant lubrication condition of teflon film are made both in a crank and hydraulic press for two kinds of specimens. The maximum drawing depth at warm forming condition reaches 1.4 times the drawing depth at room temperature in a crank press, whereas 1.6 times in a hydraulic press, and also more uniform distribution of thickness in case of warm deep drawn cup is observed. The effects of other factors on formability, such as forming temperature, speed of press and cooling of punch are examined and discussed.

  • PDF

Comparison of Warm Deep Drawability of Stainless Sheet Between Crank Press and Hydraulic Press (크랭크 프레스와 유압 프레스에서 스테인리스 강판의 온간 드로잉성 비교)

  • 김종호;최치수;나경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.178-185
    • /
    • 1995
  • Warm deep drawing for optimum forming conditions to give the maximum drawing depth is investigated and compared with the results at room temperature. Experiments which draw square cups of STS 304 stainless steel sheet under the constant lubrication condition of teflon film made both in a crank and hydrqulic press for two kinds of specimens . The maximum drawing depth at warm forming condition reaches 1.4 times the drawing depth at room temperature in a crank press, whereas 1.6 times in a hydrqulic press, and also more uniform distribution of thickness in case of warm deep drawn cup is observed. The effects of other factors on formability , such as forming temperature, speed of press and cooling of punch are examinnied and discussed.

  • PDF

A Comparative Study of Failure Criteria for Magnesium Alloy Sheet under Warm Press Forming Condition (마그네슘 판재 온간 성형의 파단 예측 모델 비교 연구)

  • Kim, H.K.;Kim, J.D.;Heo, Y.M.;Kim, W.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.113-118
    • /
    • 2012
  • Magnesium sheet alloys possess limited plastic formability at room temperature but their formability is substantially improved at elevated temperatures and optimum strain rates. In the present paper, three different types of failure criteria, namely, strain-based, stress-based, and work-based criteria, are compared for their applicability to warm press forming of magnesium sheet alloys. Warm deep-drawing experiments were conducted on AZ31 alloy sheet, and the results were used to assess the strength and weakness of the failure criteria.

Warm Formability Variation of AZ31 Sheet by Double Stage Forming Velocity (이단성형속도에 따른 AZ31판재 온간 성형성 변화)

  • Kim, H.K.;Kim, J.D.;Heo, Y.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.112-115
    • /
    • 2009
  • Press forming of magnesium alloy sheet is conducted at elevated temperatures to improve the press formability due to its low formability at room temperature. At elevated temperatures, magnesium alloy sheet formability is known to be very sensitive to the strain rate. In this paper, warm deep drawing tests of magnesium alloy AZ31 sheet was conducted under double forming velocity as well as single forming velocity to examine the formability change by forming velocity profile. The observed formability improvement by double forming velocity was analyzed by using the finite element analysis.

Forming Analysis and Experiment of Hard to Forming T Shape Aluminum Part (난성형 T형상 알루미늄 부품의 성형공정 해석 및 실험)

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • A process comprising a hot extrusion process and a warm forging process was designed to form a T-shaped aluminum structural component with a high degree of difficulty by the plastic forming method. A circular cylindrical part was extruded with a hot extrusion process, and then an embossing part was formed with a warm forging process. The formability and the maximum load required for forming were then determined using a forming analysis program. The hot extrusion process was executed at $450^{\circ}C$ under the extrusion speed at 6 mm/s, while the warm forging process was executed at $260^{\circ}C$ under the forging speed at 150 mm/s. For both the processes, a condition by which friction would not be generated between the mold and the material was implemented. The analysis results showed that the load required for hot extrusion was 1,019 tons, while the load required for the warm forging was 534 tons. The T-shaped part was manufactured by using a 1,600 tons capacity press. The graphite lubricant was coated on the mold as well as the material. A forming experiment was performed under the same condition with the analysis condition. The measured values from the load cell were 1,210 tons in the hot extrusion process and 600 tons in the warm forging process.

A Study on the press warm forming of stainless-aluminum clad sheet metals (스테인레스-알루미늄 클래드 강판재의 프레스 온간 성형 연구)

  • 류호연;박건규;김종호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06b
    • /
    • pp.8-18
    • /
    • 1998
  • The effect of press warm forming in cylindrical deep drawing of stainless-aluminum clad sheet metals are examined . The temperature of die and blank holder is varied from room temperature to 20$0^{\circ}C$, while the punch is kept cooled during test to increase the fracture strength of workpiece on the punch corner area. Test materials chosen for experiments are STS304-Al050-STS304, STS304-A1050-STS430-, STS304 and Al050 metals and teflon film as a lubricant is used on both sides of a workpiece. The limit drawing ration as well as quality of drawn cups (distribution of thickness and hardness)are investigated and discussed.

  • PDF

Study on Warm Precision Forging of Half Axle Gears

  • Jie Zhou;Yong Zhang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.152-157
    • /
    • 2003
  • A typical die-set for enclosed-die forging of half axle gears in double action hydraulic press is presented, the important factors those influence on precision forming of half axle gears are analyzed, warm forming process of half axle gears is simulated by FEM software $DEFORM\_3D$. The results show, that proper die structure and dimension, suitable web thickness and position can improve material filling, ensure full filling of tooth cavity.

  • PDF

Evaluation of Warm Deep Drawability of Magnesium Alloy AZ31 Sheet Using Solid-Type Lubricants (고체 윤활제를 사용한 마그네슘 합금 AZ31 판재 온간 디프 드로잉의 성형성 평가)

  • Kim, H.K.;Kim, J.D.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.453-458
    • /
    • 2006
  • While the die casting has been mainly used to manufacture the magnesium alloy parts, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. Because the magnesium alloy has low formability at room temperature, forming at elevated temperatures is a necessary condition to obtain the required material flow for press forming. However, the elevated temperature forming does not always guarantee the sufficient formability under the dry friction condition because the surface damage such as scratch or wear may accelerate the material failure. In the present study, the solid-type lubricants such as PTFE, graphite and $MoS_2$ were tested for the square cup warm deep drawing using the magnesium alloy AZ31 sheet. The formability improvement by using the lubricant was examined by comparing the maximum deep drawing depth using the PTFE against no lubricant. The formability difference for the different lubricant was also examined based on the maximum deep drawing depth.

Finite-Element Analysis of Formability in Warm Square Cup Deep Drawing of Magnesium Alloy AZ31 Sheet (마그네슘 합금 AZ31 판재의 온간 사각컵 딥드로잉 성형성의 유한요소 해석)

  • Kim Heung-Kyu;Lee Wi Ro;Hong Seok Kwan;Han Byoung Kee;Kim Jong Deok
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.122-125
    • /
    • 2005
  • Magnesium alloys are expected to be widely used for the parts of structural and electronic applications due to their lightweight and EMI shielding characteristics. While the die casting has been mainly used to manufacture the parts from the magnesium alloys, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. However, the magnesium alloy has low formability at room temperature and therefore, in many cases, forming at elevated temperatures is necessary to obtain the required material flow without failure. In the present study, square cup deep drawing tests using the magnesium alloy AZ31 sheet were experimentally conducted at various elevated temperatures as well as room temperature, and the corresponding finite-element simulations, which calculated the damage evolution based on the Oyane's criterion, were conducted using the stress-strain relations from the tensile tests at various temperatures. The formability predictability by the finite-element analysis was investigated by comparing the predicted damage distributions over the deformed AZ31 sheet at elevated temperatures with the corresponding experimental deformations with failures.

  • PDF