• Title/Summary/Keyword: Warm

Search Result 3,354, Processing Time 0.031 seconds

Development of the active magnetic regenerative refrigerator for room temperature application (상온 능동형 자기 재생 냉동기의 개발)

  • Park, I.;Kim, Y.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.60-64
    • /
    • 2012
  • In this paper, an investigation of a room temperature active magnetic regenerative refrigerator is carried out. Experimental apparatus includes two active magnetic regenerators containing 186 g of Gd spheres. Four E-type thermocouples are installed inside the Active magnetic regenerator(AMR) to observe the instantaneous temperature variation of AMR. Both warm and cold heat exchangers are designed for large temperature span. The cold heat exchanger, which separates the two AMRs, employs a copper tube with length of 80 mm and diameter of 6.35 mm. In order to minimize dead volume between the warm heat exchanger and AMRs, the warm heat exchangers are located close to the AMRs. The deionized water is used as a heat transfer fluid, and maximum 1.4 T magnetic field is supplied by Halbach array of permanent magnets. The AMR plate, which contains the warm and the cold heat exchangers and the AMRs, has reciprocating motion using a linear actuator and each AMR is alternatively magnetized and demagnetized by a Halbach array of permanent magnet. Since the gap of the Halbach array of permanent magnets is 25 mm and two warm heat exchangers have the motion through it, a compact printed circuit heat exchanger (PCHE) is used as a warm heat exchanger. A maximum no-load temperature span of 26.8 K and a maximum cooling power of 33 W are obtained from the fabricated Active Magnetic Regenerative Refrigerator (AMRR).

3D FEM Analysis of Warm Forging Process Design for Socket at Automotive Steering Unit (자동차 조향장치용 소???R의 온간단조 공정 설계를 위한 3차원 유한요소해석)

  • Lee Y. S.;Lee J. H.;Lee J. Y.;Bae M. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.186-189
    • /
    • 2001
  • In keeping with the needs of the times for energy and labor saving and simplifying production processes, interests has been growing in warm forging. Moreover, it is interested in increasing the material usage and production amounts. To improve the productivity and material usage, it is studied the process design of warm forging for socket. Until now, socket is manufactured by hot forging in hammer. The percentage of material usage is under $60\%$ in hammer forging. On the other han4 the percentage can be increased over $90\%$ in warm forging. To change the process from hot forging to warm forging, process designs must be performed. In this time, by using the FEM package, DEFORM-3D, we could get the shape of 1st process and minimum sealing pressure. They are very essential design data to decrease the trial and error. Practically, the overlap defect could be detected and eliminated with design modification of rib height and fillet radius. Moreover, forging load and minimum sealing pressure was defined by the 3D FEM analysis.

  • PDF

A Study on the Early Evaluation of Compressive Strength of Ultra-High Strength Concrete Using 50, 60℃ Warm Water Curing (50, 60℃ 온수양생을 이용한 초고강도 콘크리트의 강도 조기 평가)

  • Lee, Jong-Seok;Myung, Ro-Oun;Paik, Min-Soo;Gong, Min-Ho;Ha, Jung-Soo;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.73-75
    • /
    • 2011
  • In this study, prediction of later-age compressive strength of ultra-high strength concrete, based on the accelerated strength of concrete cured in 50, 60℃ warm water was investigated. W/B of 32, 23.5, 19% 3 levels were examined. And the specimens were cured in 50, 60℃ warm water. The results showed reliable accuracy by regression relation between 28day strength cured by standard curing method and accelerated strength of the concrete cured in warm water. And the specimens cured in 50, 60℃ showed more high strength development. So 60℃ curing could be considered in order to reduce the measurement error. As a result, the feasibility of 50, 60℃ warm water curing method at high strength level was confirmed.

  • PDF

Forming Analysis and Experiment of Hard to Forming T Shape Aluminum Part (난성형 T형상 알루미늄 부품의 성형공정 해석 및 실험)

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • A process comprising a hot extrusion process and a warm forging process was designed to form a T-shaped aluminum structural component with a high degree of difficulty by the plastic forming method. A circular cylindrical part was extruded with a hot extrusion process, and then an embossing part was formed with a warm forging process. The formability and the maximum load required for forming were then determined using a forming analysis program. The hot extrusion process was executed at $450^{\circ}C$ under the extrusion speed at 6 mm/s, while the warm forging process was executed at $260^{\circ}C$ under the forging speed at 150 mm/s. For both the processes, a condition by which friction would not be generated between the mold and the material was implemented. The analysis results showed that the load required for hot extrusion was 1,019 tons, while the load required for the warm forging was 534 tons. The T-shaped part was manufactured by using a 1,600 tons capacity press. The graphite lubricant was coated on the mold as well as the material. A forming experiment was performed under the same condition with the analysis condition. The measured values from the load cell were 1,210 tons in the hot extrusion process and 600 tons in the warm forging process.

A Study on the Korean Ondol-System Application in Apartment Houses (공동주택의 한국형 온돌시스템 적용에 관한 연구)

  • Ahn, Min-Hee;Choi, Chang-Ho;Yu, Ki-Hyung;Cho, Dong-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.860-865
    • /
    • 2006
  • The traditional Korean Ondol System that is a radiant floor heating system was made as warm floor and cool indoor temperature. Nowaday, Ondol is developed as the hydronic floor heating system. But unbalance of floor temperature and indoor temperature is occurred bocause strengthen thermal insulation and airtightness in building changes thermal performance. To solve these problems, we examine actual indoor environment of heating system methods in existing apartments and present the new method of floor heating system. The existing heating system made definite indoor temperatures but floor temperatures that is $22^{\circ}C-26^{\circ}C$ was maintained. To solve these problems, we adopted the differential heating system which made warm area and cool area. A differential heating system was made different pitches of heating pipe in single zone and ratio of warm area to cool area is 1 to 2. As a result of experiments, warm area temperature is $40.7^{\circ}C$, cool area temperature is $36.1^{\circ}C$. A difference of temperature between both area is 4K. A distribution of indoor vertical temperature is similar to both warm area and cool area.

  • PDF

Characteristics of Warm Acupuncture Reported in Experimental Studies: A Descriptive Narrative Review

  • Choi, Ji Won;Choi, Seo Young;Lee, Ji Sun;Yang, Gi Young
    • Journal of Acupuncture Research
    • /
    • v.36 no.3
    • /
    • pp.131-139
    • /
    • 2019
  • Background: This study aimed to investigate the correlation between heat transmission and intervention factors for warm acupuncture (such as features of acupuncture material and moxa, the treatment method, and clinical symptoms). Methods: Korean, English, Chinese and Japanese databases were analysed. Experimental studies that explored the association between thermal stimulation delivery and warm acupuncture intervention factors were included. The peak temperature, time to reach the peak temperature, and time of the effective stimulus, were set as the major parameters and analysed. Results: A total of 12 studies were included. Two studies were associated with the acupuncture needle material, 4 studies associated with the moxa mass, 1 study associated with the moxa density, 2 studies associated with the location of ignition, and 1 study associated with treatment environment were reviewed. The reporting quality of the 12 studies was low. Conclusion: This study provided limited information because of the heterogeneity of materials and parameters depending on each experiment. Further studies should clarify the correlation between heat transmission and intervention factors for warm acupuncture.

The Physiological and Ecological Comparisons between Warm (Pleuromamma sp.) and Cold Water Copepod Species (Neocalanus plumchrus) in the Northwestern Pacific Ocean Using Lipid Contents and Compositions (북서태평양에서 난수성(Pleuromamma sp.)과 냉수성(Neocalanus plumchrus) 요각류의 지방 함량 및 구성 분석을 통한 생리/생태 비교)

  • Ko, Ah-Ra;Ju, Se-Jong;Lee, Chang-Rae
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.121-131
    • /
    • 2009
  • In an effort to better understand the physiological and ecological differences between warm and cold water copepod species in Korean waters using lipid contents and compositions, two species of copepods (Pleuromamma sp. as a warm water species and Neocalanus plumchrus as a cold water species) were collected from the Northwest Pacific and East Sea/Sea of Japan, respectively. The cold water species showed two fold higher lipid contents than the warm water species (11% vs. 5% of dry weight). Wax esters, known as one of the major storage lipid classes, were found to be the dominant lipid class (accounting for 64% of total lipids) in the cold water species, whereas, in the warm water species, phospholipids, which are known as membrane components, were the dominant lipid class (accounting for 43% of total lipids),with a trace amount of the storage lipids as a form of triacylglycerols (${\leq}1%$ of total lipids). With regard to the fatty acid compositions, saturated fatty acids (SAFA), especially 16:0 (about 30% of total fatty acids), were most abundant in the warm water species, whereas the polyunsaturated fatty acids (PUFA), particularly eicosapentaenoic acid (EPA : 20:5(n-3)) (${\geq}16%$ of total fatty acids), were most abundant in the cold water species. Among the neutral fraction of lipids, phytol, originating from the side chain of chlorophyll and indicative of active feeding on phytoplankton, was detected only in the warm water species. Significant quantities of fatty alcohols were detected in cold water species, particularly long-chain monounsaturated fatty alcohols (i.e. 20:1(n-9) and 22:1(n-11)), which are well known to abound in cold water herbivorous copepods. However, only trace amounts of short-chain fatty alcohols were detected in the warm water species. Twelve different kinds of sterols were detected in these copepod species, with cholest-5-en-$3{\beta}$-ol (cholesterol) and cholesta-5, 24-dien-$3{\beta}$-ol (desmosterol) dominating in cold and warm water species, respectively. In addition, for the warm water species (Pleuromamma sp.), we assessed the latitudinal gradients of lipid contents and compositions using samples from three different latitudinal regions (Philippine EEZ, Japan EEZ, and the East China Sea). Although no latitudinal gradients of lipid contents were detected, the lipid compositions, particularly dietary fatty acid markers, varied significantly with the latitude. The findings of this study confirm that the distribution of lipid contents and compositions in copepods may not only indicate their nutritional condition and diet history, but may also provide insights into their living strategies under different environmental conditions (i.e., water temperature, food availability).

Potential Impact of Climate Change on Distribution of Warm Temperate Evergreen Broad-leaved Trees in the Korean Peninsula (기후변화에 따른 한반도 난대성 상록활엽수 잠재서식지 분포 변화)

  • Park, Seon Uk;Koo, Kyung Ah;Kong, Woo-Seok
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.2
    • /
    • pp.201-217
    • /
    • 2016
  • We accessed the climate change effects on the distributions of warm-evergreen broad-leaved trees (shorten to warm-evergreens below) in the Korean Peninsula (KP). For this, we first selected nine warm-evergreens with the northern distribution limits at mid-coastal areas of KP and climate variables, coldest month mean temperature and coldest quarter precipitation, known to be important for warm-evergreens growth and survival. Next, species distribution models (SDMs) were constructed with generalized additive model (GAM) algorithm for each warm-evergreen. SDMs projected the potential geographical distributions of warm evergreens under current and future climate conditions in associations with land uses. The nine species were categorized into three groups (mid-coastal, southwest-coastal, and southeast-inland) based on their current spatial patterns. The effects of climate change and land uses on the distributions depend on the current spatial patterns. As considering land uses, the potential current habitats of all warm-evergreens decrease over 60%, showing the highest reduction rate for the Kyungsang-inland group. SDMs forecasted the expansion of potential habitats for all warm-evergreens under climate changes projected for 2050 and 2070. However, the expansion patterns were different among three groups. The spatial patterns of projected coldest quarter precipitation in 2050 and 2070 could account for such differences.

  • PDF

Assessment of Potential Distribution Possibility of the Warm-Temperate Woody Plants of East Asia in Korea (한국에서 동아시아 난대 목본식물의 잠재분포 가능성 평가)

  • Cheolho, Lee;Hwirae, Kim;Kang-Hyun, Cho;Byeongki, Choi;Bora, Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.269-281
    • /
    • 2022
  • The prediction of changes regarding the distribution of vegetation and plant species according to climate changes is important for ecosystem management. In this study, we attempted to develop an assessment method to evaluate the possibility of the potential distribution of warm-temperate woody plant species of East Asia in Korea. To begin with, a list of warm-temperate woody plants distributed in China and Japan, but not in Korea, was prepared, and a database consisting their global distribution and bioclimatic variables was constructed. In addition, the warm-temperate vegetation zone in Korea was delineated using the coldness index and relevant bioclimatic data were collected. After the exclusion of multicollinearity among bioclimatic variables using correlation analysis, mean temperature of the coldest quarter, mean temperature diurnal range, and annual precipitation were selected as the major variables that influence the distribution of warm-temperate plants. A multivariate environment similarity surfaces (MESS) analysis was conducted to calculate the similarity scores between the distribution of these three bioclimatic variables in the global distribution sites of the East Asian warm-temperate woody plants and the Korean warm-temperate vegetation zone. Finally, using stepwise variable-selection regression, the mean temperature of the coldest quarter and annual precipitation were selected as the main bioclimatic variables that affect the MESS similarity index. The mean temperature of the coldest quarter accounted for 88% of the total variance. For a total of 319 East Asian warm-temperate woody plant species, the possibility of their potential distribution in Korea was evaluated by applying the constructed multivariate regression model that calculates the MESS similarity index.

Thermal Distribution in Living Tissue during Warm Needling Therapy (온침 시술 시 생체 조직 내 열분포 분석에 관한 연구)

  • Kim, Jongyeon;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.3
    • /
    • pp.111-119
    • /
    • 2014
  • Objectives This study aims to analyze a thermal distribution in biological living tissue during warm needling therapy by using a finite element method. The analysis provides an understanding of warm needling's efficacy and safety. Methods A model which consisted of four-layered tissue and stainless steel needle was adopted to analyze the thermal distribution in living tissue with a bioheat transfer analysis. The governing equation for the analysis was a Pennes' bioheat equation. A heat source characteristic of warm needling therapy was obtained by previous experimental measurements. The first analysis of the time-dependent temperature distribution was conducted through points on a boundary between the needle and the tissue. The second analysis was conducted to visualize the horizontal temperature distribution. Results When heat source's peak temperatures was above $500^{\circ}C$ and temperature rising rates were relatively slow, the peak temperature at skin surface exceeded a threshold of pain and tissue damage ($45^{\circ}C$), whereas when the peak temperature was around $400^{\circ}C$, the peak temperature at the skin surface was within a safe limit. In addition, the conduction of combustion energy from the moxa was limited to the skin layer around the needle. Conclusions The results suggest that the skin layer around the needle can be heated effectively by warm needling therapy, but it appears to have little effect at the deeper tissue. These findings enhance our understanding of the efficacy and the safety of the warm needling therapy.