• Title/Summary/Keyword: Wallerian degeneration

Search Result 9, Processing Time 0.028 seconds

Neural Ablation and Regeneration in Pain Practice

  • Choi, Eun Ji;Choi, Yun Mi;Jang, Eun Jung;Kim, Ju Yeon;Kim, Tae Kyun;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.29 no.1
    • /
    • pp.3-11
    • /
    • 2016
  • A nerve block is an effective tool for diagnostic and therapeutic methods. If a diagnostic nerve block is successful for pain relief and the subsequent therapeutic nerve block is effective for only a limited duration, the next step that should be considered is a nerve ablation or modulation. The nerve ablation causes iatrogenic neural degeneration aiming only for sensory or sympathetic denervation without motor deficits. Nerve ablation produces the interruption of axonal continuity, degeneration of nerve fibers distal to the lesion (Wallerian degeneration), and the eventual death of axotomized neurons. The nerve ablation methods currently available for resection/removal of innervation are performed by either chemical or thermal ablation. Meanwhile, the nerve modulation method for interruption of innervation is performed using an electromagnetic field of pulsed radiofrequency. According to Sunderland's classification, it is first and foremost suggested that current neural ablations produce third degree peripheral nerve injury (PNI) to the myelin, axon, and endoneurium without any disruption of the fascicular arrangement, perineurium, and epineurium. The merit of Sunderland's third degree PNI is to produce a reversible injury. However, its shortcoming is the recurrence of pain and the necessity of repeated ablative procedures. The molecular mechanisms related to axonal regeneration after injury include cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules, and their receptors. It is essential to establish a safe, long-standing denervation method without any complications in future practices based on the mechanisms of nerve degeneration as well as following regeneration.

Wallerian Degeneration of Insufficiently Affected White Matters in Old Infarction: Tract of Interest Analysis of Diffusion Tensor Imaging

  • Choi, Chi-Hoon;Lee, Jong-Min;Koo, Bang-Bon;Park, Jun-Sung;Kwon, Jun-Soo;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.317-324
    • /
    • 2007
  • The application of diffusion tensor imaging (DTI) and fiber tractography to Wallerian degeneration (WD) is important because this technique is a very potent tools for quantitatively evaluating fiber tracts in vivo brain. We analyzed a case and control using tracts of interest (TOI) analysis to quantify WD. We scanned a case of old infarction and an age-matched healthy volunteer. T1 magnetization prepared rapid acquisition gradient echo (MPRAGE), fluid attenuated inversion recovery (FLAIR) and 12-direction diffusion tensor imaging (DTI) were obtained and analyzed using TOI analysis. The value of mean diffusity ($D_{av}$) and fracional anisotrophy (FA) were analyzed statistically by MWU test. A p-value of less than 0.05 was considered to indicate statistical significance. A comparison of the global fiber diffusion characteristics shows WD of both the corpus callosum and the ipsilateral superior longitudinal fasciculus. The corpus callosum in particular showed trans-hemispherical degeneration. Local fiber characteristics along the geodesic paths show WD in the corpus callosum, ipsilateral superior longitudinal fasciculus, ipsilateral corticospinal tract, and ipsilateral corticothalamic tract. We have demonstrated changes in $D_{av}$ and FA values and a clear correspondence with the WD in various tracts. TOI analysis successfully revealed radial WD in white matter tracts from a region of encephalomalacia and primary gliosis, although they were only slightly affected.

Cellular and molecular change including nerve regeneration after peripheral nerve injury (말초신경 손상 후 재생과 관련된 세포적, 분자적 변화)

  • Baek Su-Jeong;Kim Dong-Hyun;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.3
    • /
    • pp.415-432
    • /
    • 2000
  • In mammals. axotomy of peripheral nerve leads to a complex. These events include swelling of cell body, disappearance of Nissl substance. Proximal and distal axon undergoes a variable deriable degree of traumatic degeneration and wallerian degeneration, respectively. Nerve injury may result in cell death or regeneration. Molecular changes include proliferation of Schwann cells, upregulation of neurotropism, neural cell adhesion molecules and cytokine. Also growth cone plays an essential role in axon guidance through interaction of cytoskeleton. We review cellular and molecular events after nerve injury and describe nerve regeneration and associated proteins.

  • PDF

Double-stranded RNA Induces Inflammatory Gene Expression in Schwann Cells: Implication in the Wallerian Degeneration

  • Lee, Hyun-Kyoung;Park, Chan-Hee;Choi, Se-Young;Oh, Seog-Bae;Park, Kyung-Pyo;Kim, Joong-Soo;Lee, Sung-Joong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.253-257
    • /
    • 2004
  • Schwann cells play an important role in peripheral nerve regeneration. Upon neuronal injury, activated Schwann cells clean up the myelin debris by phagocytosis, and promote neuronal survival and axon outgrowth by secreting various neurotrophic factors. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that certain cytoplasmic molecules, which are secreted by cells undergoing necrotic cell death, induce immune cell activation via the toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. Accordingly, this study was undertaken to examine the expression and the function of the TLRs on primary Schwann cells and iSC, a rat Schwann cell line. The transcripts of TLR2, 3, 4, and 9 were detected on the primary Schwann cells as well as on iSC. The stimulation of iSC with poly (I : C), a synthetic ligand for the TLR3, induced the expression of $TNF-{\alpha}$ and RANTES. In addition, poly (I : C) stimulation induced the iNOS expression and nitric oxide secretion in iSC. These results suggest that the TLRs may be involved in the inflammatory activation of Schwann cells, which is observed during Wallerian degeneration after a peripheral nerve injury.

Damaged Neuronal Cells Induce Inflammatory Gene Expression in Schwann Cells: Implication in the Wallerian Degeneration

  • Lee, Hyun-Kyoung;Choi, Se-Young;Oh, Seog-Bae;Park, Kyung-Pyo;Kim, Joong-Soo;Lee, Sung-Joong
    • International Journal of Oral Biology
    • /
    • v.31 no.3
    • /
    • pp.87-92
    • /
    • 2006
  • Schwann cells play an important role in peripheral nerve regeneration. Upon nerve injury, Schwann cells are activated and produce various proinflammatory mediators including IL-6, LIF and MCP-1, which result in the recruitment of macrophages and phagocytosis of myelin debris. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that necrotic cells induce immune cell activation via toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. To explore the possibility, we stimulated iSC, a rat Schwann cell line, with damaged neuronal cell extracts (DNCE). The stimulation of iSC with DNCE induced the expression of various inflammatory mediators including IL-6, LIF, MCP-1 and iNOS. Studies on the signaling pathway indicate that $NF-{\kappa}B$, p38 and JNK activation are required for the DNCE-induced inflammatory gene expression. Furthermore, treatment of either anti-TLR3 neutralizing antibody or ribonuclease inhibited the DNCE-induced proinflammatory gene expression in iSC. In summary, these results suggest that damaged neuronal cells induce inflammatory Schwann cell activation via TLR3, which might be involved in the Wallerian degeneration after a peripheral nerve injury.

AN EXPERIMENTAL STUDY ON TISSUE REACTIONS OF ALLOGENEIC SCIATIC NERVE GRAFT IN RAT (백서 좌골신경의 동종이식후 조직반응에 관한 실험적 연구)

  • Chung, Hyung-Bai;Yim, Chang-Joon;Lee, Dong-Keun;Se, Jae-Deok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.13 no.2
    • /
    • pp.203-216
    • /
    • 1991
  • Nerve allografts as a bridge of regeneration is useful in the repair of peripheral nerve defect resulting from trauma, and leprosy. But immunological rejection and complicated scar formation is an unavoidable problem in the application of allogeneic nerves. This article is intended to study of the regeneration of allogeneic nerve grafts in rats with histopathologically, scanning electron microscopically. 24 adult male Sprague-Dawley rats were used as the experimental animals. A 2cm skin incision was made on the lateral aspects of limb, parallel to femur. Segments of sciatic nerve trunk taken from rats, 10mm was resected at the middle of the thigh, nerve graft was inserted between the ends of gaps with perineural and epineural suture method with 10-0 prolene. Obsrevation was made simultaneously at 3 day, 1, 2, 3, 4, 5, 6, 8 weeks after surgery. The results were as follows. 1. In light and electronic microscopic studies, marked degenerative change of the graft nerves were observed at 2 weeks after surgery. 2. After surgery, blood clot fromation was observed at 3 day, granualtion tissue formation was observed at 2 week, and fibrous tissue proliferation was observed at 3 week. 3. In change of nerve fiber, there were Wallerian degeneration at early stage, decrease in degeneration at 4 week but degeneration of myeline was continuded at 8 week. 4. At 4 week, schwann cells proliferate at its cut ends to join with the distal and proximal stump of the damaged nerve. 5. Fibrous scar tissues are formed at 2 weeks and increased progressively in 8 weeks, which was interrupted the regeneration of grafted nerve.

  • PDF

Phospholipase A2, reactive oxygen species, and lipid peroxidation in CNS pathologies

  • Adibhatla, Rao Muralikrishna;Hatcher, J.F.
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.560-567
    • /
    • 2008
  • The importance of lipids in cell signaling and tissue physiology is demonstrated by the many CNS pathologies involving deregulated lipid metabolism. One such critical metabolic event is the activation of phospholipase $A_2$ ($PLA_2$), which results in the hydrolysis of membrane phospholipids and the release of free fatty acids, including arachidonic acid, a precursor for essential cell-signaling eicosanoids. Reactive oxygen species (ROS, a product of arachidonic acid metabolism) react with cellular lipids to generate lipid peroxides, which are degraded to reactive aldehydes (oxidized phospholipid, 4-hydroxynonenal, and acrolein) that bind covalently to proteins, thereby altering their function and inducing cellular damage. Dissecting the contribution of $PLA_2$ to lipid peroxidation in CNS injury and disorders is a challenging proposition due to the multiple forms of $PLA_2$, the diverse sources of ROS, and the lack of specific $PLA_2$ inhibitors. In this review, we summarize the role of $PLA_2$ in CNS pathologies, including stroke, spinal cord injury, Alzheimer's, Parkinson's, Multiple sclerosis-Experimental autoimmune encephalomyelitis and Wallerian degeneration.

The Role of the Peripheral Chemokine, CCL3, in Hyperalgesia following Peripheral Nerve Injury in the Rat (신경손상에 의해 유발된 과민통반응에서 말초 케모카인 CCL3의 역할)

  • Leem, Joong Woo;Lee, Hyun Joo;Nam, Taick Sang;Yoon, Duck Mi
    • The Korean Journal of Pain
    • /
    • v.21 no.3
    • /
    • pp.187-196
    • /
    • 2008
  • Background: Upregulation of one type of the pro-inflammatory chemokine (CCL2) and its receptor (CCR2) following peripheral nerve injury contributes to the induction of neuropathic pain. Here, we examined whether another type of chemokine (CCL3) is involved in neuropathic pain. Methods: We measured changes in mechanical and thermal sensitivity in the hind paws of naïve rats or rats with an L5 spinal nerve ligation (SNL) after intra-plantar injection of CCL3 or met-RANTES, an antagonist of the CCL3 receptor, CCR1. We also measured CCL3 levels in the sciatic nerve and the hind paw skin as well as CCR1 expression in dorsal root ganglion (DRG) cells from the lumbar spinal segments. Results: Intra-plantar injection of CCL3 into the hind paw of naive rats mimicked L5 SNL-produced hyperalgesia. Intra-plantar injection of met-RANTES into the hind paw of rats with L5 SNL attenuated hyperalgesia. L5 SNL increased CCL3 levels in the sciatic nerve and the hind paw skin on the affected side. The number of CCR1-positive DRG cells in the lumbar segments was not changed following L5 SNL. Conclusions: Partial peripheral nerve injury increases local CCL3 levels along the degenerating axons during Wallerian degeneration. This CCL3 binds to its receptor, CCR1, located on adjacent uninjured afferents, presumably nociceptors, to induce hyperalgesia in the neuropathic pain state.

Morphometric Study on Regeneration of Vascularized Nerve Graft (혈행화 신경이식 후 신경재생에 대한 형태계측학적 연구)

  • Tark, Kwan-Chul;Ahn, Sung-Jun;Kim, Dae-Yong;Lee, Young-Ho
    • Archives of Reconstructive Microsurgery
    • /
    • v.6 no.1
    • /
    • pp.9-28
    • /
    • 1997
  • Adequate vascularization is pivotally essential for a successful nerve graft. Theoretically, the immediate vascularization will inhibit fibroblast infiltration and stimulate nerve cell regeneration. In this study, histomorphological and electrophysiological studies were performed to determine if vascularized grafts are functionally superior. In rat model, a 4cm segment of the sciatic nerve was obtained and placed as a non vascularized graft on one side, and as a vascularized graft connected to the inferior gluteal vessels on the opposite side. To determine the compound action potential of the gastrocnemius muscle, electromyography was done after 2, 3 and 4 months. Histomorphologically, the distribution of myelinated nerve fibers and Schwann cell were evaluated after toluidine blue staining, The following resutls were obtained: 1. The electrophysiological studies showed no difference between the nonvascularized and vascularized grafts. 2. Two and three months after grafting, myelinated nerve fibers were more abundant in the vascularized proximal, middle and distal areas in all nerve fibers of varying diameters. 3. In the post-nonvascularized graft 2-month group, a few myelinated nerve fibers were present in the proximal and middle areas, but none distally. In the post-vascularized graft 2 month group, myelinated nerve fibers ranging $2-8{\mu}m$ were present in all three areas. 4. In the post-nonvascularized graft 3 month group, a few myelinated nerve fibers ranging in $2-6{\mu}m$ were present in all three areas, but in the post-vascularized graft 3 month group, many myelinated nerve fibers ranging in $2-10{\mu}m$ were present in all three areas. 5. In the post-graft 4-month group, more myelinated nerve fibers were present in all three areas of the vascularized grafts. However, nerve fibers of less than $2{\mu}m$ in diameter were more abundant in the non vascularized grafts. 6. Schwann cells were more abundant in the proximal, middle and distal areas of the post-vascularized 2, 3 and 4-month grafts. Based on these findings, the immediate restoration of circulation in vascularized nerve grafts allows for the increased number of surviving Schwann cells, rapid healing of the axon and myelin sheath changes which occur during Wallerian degeneration, and thus is able to stimulate a morphologically optimal regeneration.

  • PDF