• Title/Summary/Keyword: Wall separation distance

Search Result 37, Processing Time 0.024 seconds

Experimental study on effect of underground excavation distance on the behavior of retaining wall

  • Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.413-420
    • /
    • 2019
  • The changes in earth pressure and ground settlement due to underground excavation near an existing retaining wall were studied experimentally according to the separation distance between the underground excavation and the retaining wall. In addition, this study attempted to experimentally prove that the arching phenomenon occurred during the construction of the underground space. A model tank having 120 cm in length, 160 cm in height, and 40 cm in width was manufactured to simulate underground excavation through the use of five separated base wall bodies. The variation of earth pressure on the retaining wall was measured according to the underground excavation phase through the use of 10 separated right wall bodies. The results showed that the earth pressure on the retaining wall was changed by the lowering of the first base bottom wall; however, the earth pressure was not changed significantly by the lowering of the third base bottom wall, since the third base wall had sufficient separation distance from the retaining wall. Lowering of the first base wall induced a decrease in the earth pressure in the lower part of the retaining wall; in contrast, lowering of the first base wall induced an increase in the earth pressure in the middle part of the retaining wall, proving the arching effect experimentally. It is necessary to consider the changes in earth pressure on the retaining wall in designing earth retaining structures for sections where the arching effect occurs.

Total temperature investigation in free & wall jet regions (고속 자유/벽 제트 영역에서의 총온도 특성 고찰)

  • Jung Hyungab;Lee Jangwoo;Yu Mansun;Cho Hyunghee;Hwang Kiyoung;Bae Ju chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.329-333
    • /
    • 2005
  • Total temperature distribution in high speed fee & wall jet regions was investigated using the total temperature probe. For the free jet, the distance of probe from the nozzle exit is changed in the range of 1, 2, 4 and 6 times o nozzle exit diameter. Energy separation phenomenon was observed on shear layer between jet and ambient. In wall jet region, impinging plate was fixed at Z/D=2 and total temperature distribution has been measured for various radial distance($R/D=1.25\sim2.0$). Energy separation phenomenon was found at wall jet boundary and near wall, and was compared with measured adiabatic wall temperature value.

  • PDF

Investigation of the Experiment for Separation Distance between Powerline Earth and Pipelines (전력선 접지와 매설배관의 이격거리 실증실험 사례 조사)

  • Lee, H.G.;Ha, T.H.;Ha, Y.C.;Bae, J.H.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.87-88
    • /
    • 2006
  • There are a number of reported instances of actual pipeline rupture during power line faults caused by melting of the pipe wall. This type of hazard was considered to be among the most serious of AC effects on pipelines in an international survey, comparable to the personnel safety hazard. Moreover, resistance coupling is not only a risk when the pipeline parallels a power line but also when they cross. One method of minimizing the effects of resistive coupling is by maintaining an appropriate separation distance between the pipeline and tower. This paper investigate the experiment for separation distance between the powerline earth and pipelines.

  • PDF

A Study on the Optimal Installation of Ducted Fan Ventilation System in Long Mine Airways - Focused on the Wall Separation Distance and the Gap Length between Ducts (장대 광산갱도내 풍관 접속 통기선풍기 최적 설치 방안연구 - 벽면과 풍관간의 이격거리 중심으로)

  • Lee, Chang Woo;Nguyen, Van Duc
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.12-25
    • /
    • 2017
  • In local underground mines heavily depending on the natural ventilation, ducted fan auxiliary ventilation system is strongly recommended instead of the total mine ventilation system requiring large capital and operating costs. Optimizing the installation of ducted fans in series in long large-opening mines is required to assure the economy and efficiency of the ventilation system. The two most critical design parameters for optimization are the wall separation distance and gap length between adjoining ducts. This study aims at deriving the optimal values for those two parameters concerning the economic and environmental aspects through the extensive CFD analysis, which minimizes pressure loss, leakage and entrainment of the contaminated air in the gap space. The ranges of the wall separation distance and gap length for study are selected by taking into consideration the existing recommendations and guidelines. The ultimate goal is to optimize the auxiliary ventilation system using ducted fans in series to provide a reliable and efficient solution to maintain clean and safe workplace environment in local long underground mines.

Experimental study on the behavior of retaining wall according to underground excavation distance (지하굴착 이격거리에 따른 흙막이벽체 거동에 대한 실험적 연구)

  • Park, Jong-Deok;Ahn, Chang-Kyun;Kim, Do-Youp;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.155-164
    • /
    • 2016
  • The changes in earth pressure and ground settlement due to the underground excavation nearby the existing retaining wall according to the separation distance between underground excavation and retaining wall, were studied experimentally. A soil tank having 160 cm in length and 120 cm in height, was manufactured to simulate the underground excavation like tunnel by using 5 separated bottom walls. The variation of earth pressure was measured according to the excavation stages by using 10 separated right walls simulating the retaining wall. The results showed that the earth pressure was changed by the lowering of first bottom wall(B1), however the earth pressure was not changed significantly by the lowering of third bottom wall(B3) since B3 had sufficient separation distance from retaining wall. Lowering of first bottom wall(B1) induced the decrease of earth pressure in lower part of retaining wall, on the contrary, lowering of first bottom wall(B1) induced the increase of earth pressure in middle part of retaining wall proving the arching effect.

Behavior of braced wall due to distance between tunnel and wall in excavation of braced wall nearby tunnel (터널에 인접한 흙막이굴착 시 터널 이격거리에 따른 거동특성)

  • Ahn, Sung Joo;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.657-669
    • /
    • 2018
  • In recent years, the development of complex urban areas has become saturated and much attention has been focused on the development of underground space, and deep excavation is frequently performed in order to increase the utilization of underground space due to the enlargement of buildings and the high rise of buildings. Therefore, in this study, we tried to understand the behavior of the braced wall and the behavior of the tunnel adjacent to the wall according to the stiffness of the wall and the distance between the tunnel and wall. As a result of the study, the deformation of the braced wall tended to decrease with increasing the stiffness of the wall, and the axial force acting on the struts was also different according to the stiffness of braced wall. When the stiffness of the braced wall is small (2 mm), the point at which the axial force of the braces maximizes is near 0.3H of the wall. When the stiffness of the braced wall is large (5 mm), the axial force is maximum at around 0.7H of the wall. Also, the tunnel convergence occurred more clearly when the separation distance from the braced wall was closer, the stiffness of the wall was smaller, and the tunnel convergence was concentrated to the lower right part. The ground settlement due to the excavation of the ground tended to decrease as the distance between tunnel and braced wall was closer to that of the tunnel, which is considered to be influenced by the stiffness of the tunnel.

A Study on the Effect of the Stemming Hole medium to the Blasting Separation Distance of Structure (공내 매질이 구조물의 발파이격거리에 미치는 영향에 관한 연구)

  • Kang, Hee-Seop;Jeong, Jung-Gyu;Bang, Myung-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.100-108
    • /
    • 2017
  • Because of urbanization, Industrialization and expansion of transportation network, blasting works are recently increasing in construction field. The blasting work influences environmental effects to residents and the safety of facilities around the working place, so the development of blasting technology is needed to reduce the damage to residents. The blasting mechanism in the hole was studied and tested in the blasting sites by the difference of diameter between explosives and drilling hole, which is named by the decoupling effect. This effect was tested by changing the medium between explosives and hole wall in three working sites(railway, highway and industrial complex). The vibration velocity of blasting was recorded and vibration equations were produced by regression analyses. Finally, the structure separation distance was derived using these equations. The testing results show that the specific gravity of medium is larger, the separation distance is smaller and the duration time of blasting is shorter in case of large specific gravity of medium, so the vibration effect stops more fastly in the water compared with the air.

A Study on Viscous Flow around a Pipeline between Parallel Walls by the Numerical Simulation (수치 시뮬레이션을 통한 평판내 파이프라인 주위의 점성유동 연구)

  • Kwag, Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.473-478
    • /
    • 2003
  • Numerical study was made on the flow characteristics around a circular pipeline between parallel walls. The incompressible Navier-Stokes equations were solved by using a third-order upwind differential scheme. When the distance near a wall is small enough, the vortex shedding is almost completely suppressed because of the interaction with the wall boundary layer separation. This study aims to clarify the characteristics of the vortex shedding regime as the body approaches a wall as Reynolds number varies. The feature of separated vorticity dynamics is analyzed at different conditions with particular attention to the interaction between the pipeline wake and the induced separation on the plane walls.

Study on the Effect of Near Blasting to Earth Retaining Wall by Measuring Underground Vibrations (지중진동 측정을 통한 흙막이 근접발파 영향 연구)

  • Cho, Lae Hun;Jeong, Byung Ho
    • Explosives and Blasting
    • /
    • v.33 no.4
    • /
    • pp.14-24
    • /
    • 2015
  • We conducted test blasting in 3 sites to identify the effect on safety of the earth retaining wall by near blasting vibration. As a test result, we confirm that underground structures(earth anchor et al.) are relatively safer than surface structures as the underground vibration is 10~52% of surface vibration at a same distance. We derived surface and underground vibration prediction equations by regression analysis of measured 3 sites' surface and underground vibration PPV. Also we calculated minimum separation distance by blasting pattern about underground and surface curing concrete. Unless any discontinuity which are unsafe on the earth retaining wall appear, blasting work using under 2.4kg per delay is not meaningful to the earth retaining wall's safety as the result of measuring near blasting vibration, confirming change the earth retaining wall's instrument, and observation of structural deformation.

Measurement of Adiabatic Wall Temperature on an Impinging Surface by Under-expanded Jet (과소팽창된 충돌제트에 의한 단열벽면 온도 측정)

  • Yu, Man-Sun;Lee, Jang-Woo;Kim, Byung-Gi;Cho, Hyung-Hee;Hwang, Ki-Young;Bae, Ju-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.79-84
    • /
    • 2005
  • An experimental investigation for impingement of under-expanded, axisymmetric jets on a flat plate has been conducted, and the surface pressure, the adiabatic wall temperature distributions on the plate have been measured in detail. For the explanation on the wall temperature distributions, the total temperature distributions along a free jet have also been measured with total temperature probes. In this study, the under-expansion ratio and the nozzle-to-plate distance have been considered as experimental parameters. Depending on nozzle-to-plate distances, different distributions of adiabatic wall temperature are shown by the energy separation at a jet edge and a impinged surface. Also, the recovery factor on a stagnation point decreases significantly due to the isolation of fluid particles in a central region.