• Title/Summary/Keyword: Wall pressure

Search Result 2,444, Processing Time 0.03 seconds

Studies on the Geology and Geochemistry in the Beonam Mine, Korea (전북 번암광산의 지질과 지화학적 연구)

  • Chung, Jae-Il;Na, Choon-Ki;Lee, Young-Up;Jeon, Seo-Ryeong;Kim, Seon-Young
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.623-633
    • /
    • 1995
  • The Beonam deposits which is located in south-western part of Sobaeksan massif are emplaced along $N20{\sim}30^{\circ}E$ trending fissures in Precambrian Sobaeksan gneiss complex. Surrounding granites are inferred to be differentiated and formed from calc-alkaline magma which was generated from remelting or partial melting of the crustral material having igneous composition. The Sr isotope data of ore minerals showing significantly low initial Sr value relative to those of surrounding granite batholiths suggest that the ore-bearing fluid formed the Beonam Au-Ag mine are isotopically distinct from those of the wall rocks, and it indicates that there is no evidence of genetic relationship between ore-bearing fluids and surrounding granites, although further study should be needed. The results of paragenetic studies suggest three stages of hydrothermal mineralization; stage I: base-metal sulfides stage, stage II: late base-metal sulfides, electrum and silver-bearing sulfosalts stage, stage III: minor silverbearing minerals, barren quartz and carbonates stage. The temperature, salinity and pressure of the Beonam deposits estimated from mineral assemblage, chemical composition, fluid inclusion and sulfur isotope geothermometry are as follows; stage I: $200{\sim}315^{\circ}C$, 3.5~6.5 NaCl eq. wt%, 0.28~0.61 Kbar, stage II: $150{\sim}235^{\circ}C$, 4.5~7.4 NaCl eq. wt%, 0.11~0.15 Kbar. The estimated oxygen and sulfur fugacity during first stage mineralization, based on phase relation of associated minerals, range from $10^{35.1}{\sim}10^{-39.7}$ atm. and $10^{-11.0}{\sim}10^{-13.4}$ atm., respectively. All these evidences suggest that the Beonam deposits are polymetallic meso-epithermal ore deposits.

  • PDF

Behavior Characteristics of Underreamed Ground Anchor through Field Test and Numerical Analysis (현장시험 및 수치해석을 통한 확공지압형 앵커의 거동특성)

  • Kim, Gyuiwoong;Ahn, Kwangkuk;Min, Kyongnam;Jung, Chanmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.37-44
    • /
    • 2013
  • The superiority of bearing ground anchor system has been recognized for the stability and economical efficiency since 1950s in Japan, Europe and etc. The ground anchor introduced in Korea, however, has the structural problem that the tensile strength comes only from the ground frictional force caused by the expansion of the wedge body and it is impossible to evaluate the bearing resistance because the adhering method of the anchor body to hollow wall is not appropriate. In this study, the underreamed ground anchor system was developed so that the bearing pressure of ground anchor can exert as much as possible. And the in-situ tests were performed to evaluate the pullout behavior characteristics and to verify the decreasing effect of the bonded length. The pullout tests were performed with the non-grouted tension condition and grouted tension condition in order to identify the pull-out resistance of each conditions. In addition, it was compared with the results of friction anchor. Finally, the numerical analysis was fulfilled to verify the bearing effect at the bonded part through the detailed modeling by PLAXIS-2D, which is general finite element method analysis program.

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.

Marsupialization of the Nictitating Membrane Cyst Following Cherry Eye Repair in a Dog

  • Kim, Sunhyo;Kang, Seon-mi;Susanti, Lina;Kim, Boyun;Park, Yoonji;Shim, Jaeho;Go, Seokmin;Lee, Eunji;Seo, Kangmoon
    • Journal of Veterinary Clinics
    • /
    • v.37 no.3
    • /
    • pp.149-152
    • /
    • 2020
  • One-year-old male Cocker Spaniel dog was referred for the third eyelid enlargement and inflammation in the left eye (OS). It gradually swelled for 2 weeks after the cherry eye repair by conjunctival mucosa pocket procedure at a private animal clinic. Routine ophthalmic examinations including neuro-ophthalmic examination, Schirmer tear test, intraocular pressure and corneal fluorescein staining were all normal. No lesions were found on slit lamp biomicroscopy and indirect ophthalmoscopy except for third eyelid swelling in the OS. Ultrasonography revealed cystic structure within the OS nictitating membrane. Fluid from the cyst was aspirated and there were no microorganisms or neoplastic changes. Surgical intervention was performed under general anesthesia. On the day of the surgery, there was a deep corneal ulcer in the OS, which had not existed before. Ventral palpebral surface of the third eyelid was incised horizontally to the shaft of the T-shaped hyaline cartilage. And then, a full thickness of the cystic wall was incised and marsupialized. Additionally, a direct suture was performed on the ulcerated cornea. Topical and systemic antibiotics and anti-inflammatory drugs were prescribed. One month after the surgery, the third eyelid swelling and the discharge were improved. Marsupialization of the nictitating membrane cyst relieved the swelling of the third eyelid and inflammation. It could be a simple but effective surgical intervention for the cystic complication of conjunctival mucosa pocket procedure in dogs.

A Numerical Study on Mass Transfer and Methanol Conversion Efficiency According to Porosity and Temperature Change of Curved Channel Methanol-Steam Reformer (곡유로 메탄올-수증기 개질기 공극률 및 온도 변화에 따른 물질 전달 및 메탄올 전환율에 대한 수치해석적 연구)

  • Seong, Hong Seok;Lee, Chung Ho;Suh, Jeong Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.745-753
    • /
    • 2016
  • Micro methanol-steam reformer for fuel cell can effectively produce hydrogen as reforming response to steam takes place in low temperature (less than $250^{\circ}C$). This study conducted numerical research on this reformer. First, study set wall temperature of the reformer at 100, 140, 180 and $220^{\circ}C$ while methanol conversion efficiency was set in 0, 0.072, 3.83 and 46.51% respectively. Then, porosity of catalyst was set in 0.1, 0.35, 0.6 and 0.85 and although there was no significant difference in methanol conversion efficiency, values of pressure drop were 4645.97, 59.50, 5.12 and 0.45 kPa respectively. This study verified that methanol-steam reformer rarely responds under the temperature of $180^{\circ}C$ and porosity does not have much effect on methanol conversion efficiency if the fluid flowing through reformer lowers activation energy by sufficiently contacting reformer.

A study on the development of simulation program for the small naturally aspirated four-stroke diesel engine (소형 4행정사이클 무과급 디이젤 기관의 성능 시뮤레이션 전산프로그램의 개발에 관한 연구)

  • 백태주;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.17-36
    • /
    • 1984
  • Since 1973, the competition on the development of fuel saving type internal combustion engines has become severe by the two times oil shock, and new type engines are reported every several months. Whenever these new type engines are developed, new designs are required and they will be offered in the market after performing the endurance test for a long time. But the engine market is faced with a heavy burden of finance, as the developing of a new engine requires tremendous expenses. For this reason, the computer simulation method has been lately developed to cope with it. The computer simulation method can be available to perform the reasonable research works by the theoretical analysis before carrying out practical experiments. With these processes, the developing expenses are cut down and the period of development is curtailed. The object of this study is the development of simulation computer program for the small naturally aspirated four-stroke diesel engine which is intended to product by the original design of our country. The process of simulation is firstly investigated for the ideal engine cycle, and secondly for the real engine cycle. In the ideal engine cycle, each step of the cycle is simulated by the energy balance according to the first law of thermodynamics, and then the engine performance is calculated. In the real cycle imulation program, the injection rate, the preparation rate and the combustion rate of fuel and the heat transfer through the wall of combustion chamber are considered. In this case, the injection rate is supposed as constant through the crank angle interval of injection and the combustion rate is calculated by the Whitehouse-Way equation and the heat transfer is calculated by the Annand's equation. The simulated values are compared with measured values of the YANMAR NS90(C) engine and Mitsubishi 4D30 engine, and the following conclusions are drawn. 1. The heat loss by the exhaust gas is well agree with each other in the lower load, but the measured value is greater than the calculated value in the higher load. The maximum error rate is about 15% in the full load. 2. The calculated quantity of heat transfer to the cooling water is greater than the measured value. The maximum error rate is about 11.8%. 3. The mean effective pressure, the fuel consumption, the power and the torque are well agree with each other. The maximum error is occurred in the fuel consumption, and its error rate is about 7%. From the above remarks, it may be concluded that the prediction of the engine performance is possibly by using the developed program, although the program needs to reform by adding the simulation of intake and exhaust process and assumping more reliable mechanical efficiency, volumetric efficiency, preparation rate and combustion rate.

  • PDF

Gas Transfer and Hemolysis Characteristics of a New Type Intravenous Lung Assist Device (혈관 내 신형 폐보조장치의 기체전달 및 용혈 특성)

  • 김기범;권대규;정경락;이삼철
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.121-126
    • /
    • 2003
  • The purpose of this work was to assess and quantify whether the beneficial effects in long-term gas exchange at exciting frequency were obtained at different frequencies as well and then to develop a vibrating intravascular lung assist device(VIVLAD), for Patients suffering from acute respiratory distress syndrome(ARDS) or chronic respiratory problems. We investigate the optimal condition of the frequency band excited with new vibrator at state of limit hemolysis when blood hemolysis came to through a membrane vibration action. The experimental design and procedures were given for a device used to assess the effectiveness of membrane vibrations. Quantitative experimental measurements were performed to evaluate the performance of the device . and to identify membrane vibration dependence on blood hemolysis. We developed an analytical solution for the hydrodynamics of flow through a bundle of sinusoidally vibrated hollow fibers that is used to provide some insight into how wall vibrations might enhance the performance of the VIVLAD. In the result, it was measured that the effect of various excited frequencies in gas transfer rate and hemolysis from the maximum gas transfer rate at no vibration when the maximum gas transfer rates showed at module type 6, module type 6 consisted of 675 hollow fiber membranes The maximum oxygen transfer rate was caused by the occurrence of maximum amplitude and transfer of vibration to hollow fiber membranes when it was excited by the frequency band of 7Hz at each blood flow rate. because this frequency became the End mode resonance frequency of the flexible in blood flow. Also, when module type 6 was excited at an excited frequency of 7Hz. blood hemolysis was low. Therefore, we decided that the limit of hemolysis frequency is 7Hz . because maximum amplitude occurred at this frequency.

Nocturnal temperature distribution on orange orchards in Cheju Island (II) (제주도 감귤 과수원의 야간 기온 분포(II))

  • ;;Lee, Seung-Ho;Lee, Hyong-Young
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.3
    • /
    • pp.230-241
    • /
    • 1995
  • The Characteristics of nocturnal temperature fields were analyzed to understand the factors of freezing-and-cold damages on orange orchards in Cheju Island. Temperatures were measured from January 7th through 27, 1995 at 25 sites in an area of 1x1.25$ extrm{km}^2$, Wasan-ri, Chochon-up, Pukcheju-kun located on the northeastern slope of Mt.Hanla. Several other weather elements such as wind and cloud were observed as supplementary data. Surface weather maps were also analyzed to clarify the influence of prevailing pressure patterns on the temperature fields. The vertical temperature profiles were obtained at the height from the ground up to 360 cm in 30 cm intervals at site 3, a frost hollow, and site 10 on the upper slope. The results show that freezing damages occured in the hollows, terrain depressions, rather than at the upper slope due to nocturnal radiation cooling as well as accumulation of cold airflow from Mt.Hanla. Windbreaks of densely planted Japanese ceders with stone-walls also roled as obstacles to the cold airflow in nights with Clear skies and light winds. The maximum intensity of temperature inversion in hollows, quasi-cold air lake, was 3.1$^{\circ}C$. Cold air from Mt.Hanla was trapped in the depressions up to a height of 90cm forming frost pocket. Man-made facilities such as shelterbelt or stone-wall which are built to prevent the penetration of cold north-westeries in winter aggravated the cold damage. The differance of daily minimum temperatures between before and behind shelterbelts was 2.$0^{\circ}C$. The man-made convection by smudgin which raised the temperatures up to 3.8$^{\circ}C$ can reduce the cold damage in the hellows.

  • PDF

Analysis of Meteorological and Radiation Characteristics using WISE Observation Data (WISE 관측자료를 이용한 기상 및 복사 특성 분석)

  • Lee, Hankyung;Jee, Joon-Bum;Min, Jae-Sik;Kim, Sangil;Chae, Jung-Hoon
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.89-102
    • /
    • 2018
  • We analyzed the meteorological and radiation characteristics of Seoul metropolitan area using data from energy flux towers that were installed and operated by the Weather Information Service Engine (WISE). The meteorological and radiation variables included temperature, pressure, wind speed, wind direction, relative humidity, surface temperature, rainfall amount, upward and downward solar radiation, upward and downward longwave radiation, albedo and emissivity from 14 energy flux stations located in the Seoul metropolitan area from July 2016 to July 2017. According to the monthly data during the period, the albedo is low and emissivity is high at the Jungnang station in the urban and opposite at Bucheon station in the suburban area. For a station in natural state, the albedo was higher than urban stations because solar radiation reflects effectively. Relatively high temperatures were shown at stations located in urban area with low albedo and high emissivity, in general. However, temperature was high at Gajwa and Ttukseom stations, the albedo was relatively high due to the station environment surrounded by glass wall buildings and the Han river. In the station located in suburban area, both emissivity and temperature were low. Among these stations, Bucheon station had the highest emissivity values because the surface temperature was relatively lower than that of the suburban area. As a result, the albedo decreased and the emissivity increased at stations in urban areas. Additionally, Seoul metropolitan area had less than $100Wm^{-2}$ of net radiation, which implied that radiation energy could be absorbed in the atmosphere.

A Study on Speedy Water Content Measurement Method for Soils (흙의 급속 함수비 측정방법에 관한 연구)

  • Park, Sung-Sik;Kim, Ju-Young;Lee, Sae-Byeok
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.57-65
    • /
    • 2017
  • During a construction of embankment, sub base, or retaining wall backfill, the speedy measurement of water content is necessary. In this study, a test method for field determination of water content of soil by the calcium carbide gas pressure (speedy water content measurement method) was evaluated for its reliability and accuracy. Dry oven and microwave oven methods were also used for water content measurement. In the test, weathered granite and Nakdong River sand in the site and kaolinite were used for water content measurement. The mass of 20, 22, 24, 26, 28, and 30 g of soil was respectively tested for 1, 3, and 5 min. The effect of each sample on water content was compared one another and analyzed. As the mass and testing time increased, the water content increased. The amount of soil was more important factor than testing time for the speedy water content measurement. In order to obtain similar result to that of dry oven method, 3 min of testing time with 24 g of soil was necessary for weathered granite classified as SM and 3 min with 30 g for Nakdong River sand classified as SP. For Nakdong River sand with 20-50% of kaolinite, the water content by speedy measurement increased as the clay content increased.