• Title/Summary/Keyword: Wall force

Search Result 923, Processing Time 0.031 seconds

Shear Design of Reinforced Concrete Shear Walls with Openings using Strut-and-Tie Models (스트럿-타이 모델을 이용한 개구부를 갖는 전단벽의 전단 설계)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.244-247
    • /
    • 2004
  • This study proposes the design method of the shear walls with openings using strut-and-tie models. Strut-and-tie models are constructed for opening near the middle of the wall and for opening near a wall boundary. These enables an admissible load path for the horizontal earthquake force. These models consider the size and position of opening effectively. Each model is suitable for the seismic response corresponding with lateral forces in a given direction to be considered. The proposed models are good agreements with nonlinear finite element analysis(DIANA) results.

  • PDF

직육면체 공동 내부의 소음 저감을 위한 능동 구조-음향 연성제어

  • 이상원;황철호;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.218-223
    • /
    • 1997
  • The technique used is the active structural acoutrol (ASAC)approach which involves controlling the acoustic response of a panel-cavity covpled system by applying oscillating force inputs in the form of prezoelectric actuators directly to the flexible panel. The linear quadratic Gaussian control scheme is used for attenuating nosie inside the rectangular enclosure causing by flexible wall vibration. Results indicated the application of control inputs to the radiating wall resukted in considerable noise reductions inside the cavity. Auso,the possibility of application to the more complicated fluid-structure coupled system is verified.

Observation of Soft-Rot Wood Degradation Caused by Higher Ascomyceteous fungi

  • Lee, Yang-Soo
    • Mycobiology
    • /
    • v.28 no.1
    • /
    • pp.47-50
    • /
    • 2000
  • The capability of higher ascomyceteous fungi to cause typical soft-rot decay for wood under laboratory conditions is reviewed and discussed. Fungi tested were extremely active in the decomposition of timbers. Scanning electron micrographs illustrated typical soft-rot decay pattern of higher wood decay ascomycetes, with the exception of H. trugodes that caused white-rot decay. Most of the fungi tested could be grouped as soft-rot fungi that showed typical soft-rot type II. Hypha confined primarily to the resin canals in softwoods or vessel elements in hardwoods and spread tracheid to tracheid via pits of cell wall to cell wall with mechanical force.

  • PDF

Assessment of Impact Resistance Performance of Post-tensioned Curved Wall using Numerical Impact Analysis (긴장력이 도입된 곡면벽체의 충돌저항성능 수치해석평가)

  • Chung, Chul-Hun;Lee, Jungwhee;Jung, Raeyoung;Yu, Tae-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.161-167
    • /
    • 2016
  • In this study, the effect of wall curvature and post-tension force on impact resistance is evaluated by numerical analysis method. A total of twelve cases with two parameters such as wall shape of flat and curved, and consideration of post-tensioning force were included in this study. A 3D detailed finite element model of commercial passenger plane engine is utilized as projectile. The depths of penetration and central displacement calculated from the numerical simulations were compared and analysed. As the results of the numerical simulations of this study, penetration depth was reduced approximately 60~80% due to the application of post-tension force, but the decrease of maximum central displacement was not remarkable. Also, the effect of curvature was relatively insignificant.

Rational Sectional Force and Design Improvement of Abutment Wing-Wall (교대 날개벽의 합리적인 단면력 산정 및 설계 개선)

  • Chung, Wonseok;Kim, Minho;An, Zu-Og;Choi, Hyukjin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.145-152
    • /
    • 2011
  • Current Bridge Specification for Highway Bridges adopts a simplified method to determine sectional forces of abutment wing by dividing its area into four sections. This simplified method was developed in Japan when numerical analysis was not mature and computer resources were expensive. This simplified method has been with us without modification. This study evaluates the problem of current design practice to improve the design guideline for abutment wing. In this study, a finite element model of abutment wing based on shell elements was developed to obtain accurate sectional force. In addition, foreign design specifications regarding abutment wing were thoroughly examined. It has been observed that sectional forces obtained from the simplified method produce inaccurate results under various geometric shapes. Thus, it is recommended that two dimensional plate analyses should be adopted for future design of abutment wing wall.

Investigation of Hydrodynamic Force in a Portable Water Storage Tank of Reentrant Bottom Shape using Nonlinear Peregrine Model (바닥면이 오목한 이동형 소방용수 저장탱크의 수직 벽면에서의 동수력 연구: 비선형 Peregrine 모델)

  • Park, Jinsoo;So, Soohyun;Jang, Taek Soo
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.61-65
    • /
    • 2019
  • In the present study, the hydrodynamic force affected by a lapping wave induced by supplied falling water acting on the vertical wall of a portable water storage tank was analyzed using a nonlinear Peregrine model. The lapping wave's maximum run-up amplitudes and the hydrodynamic forces in the wall of the tank measured by linear and nonlinear Peregrine's models were compared numerically. As a result, it was concluded that the linear model may underestimate the effects on the vertical wall; therefore, it is more appropriate to use a nonlinear Peregrine model. Furthermore, this result can contribute to the stable structural designs of portable water storage tanks.

Applicability of Pseudostatic Analysis for the Seismic Design of Temporary Retaining Structures in a Deep Excavation (흙막이 가시설 내진설계를 위한 등가정적해석의 유효성 분석)

  • Yu, Sang-Hwa;Kim, Dong-Chan;Kim, Jongkwan;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.35-50
    • /
    • 2023
  • A preliminary study is conducted to develop seismic design guidelines for temporary retaining structures in a deep excavation. The study involved a comprehensive literature review of the seismic design standards applied domestically and internationally, as well as various methods to calculate seismic earth pressure for pseudostatic analysis. The FLAC 2D, a two-dimensional finite difference analysis program, was utilized to perform pseudostatic analysis using the Semirigid pressure method, Wood method, and Mononobe-Okabe method. The resulting analysis data for the wall moment and axial force of the strut were compared with the dynamic analysis outcomes to evaluate the applicability of pseudostatic analysis. The Semirigid pressure method predicted the most reasonable moment for Stiff walls experiencing horizontal displacements up to 0.4%H. Predicting the axial force of the strut exactly was challenging because the pseudostatic analysis cannot consider dynamic soil-structure interaction; however, it is deemed available for conservative preliminary review to ensure safety.

Frost Heave Force of Ground and Countermeasure for Damage of Structures (지반의 동상력과 구조물의 피해대책)

  • Rui, Da-Hu;Teruyuki, Suzuki;Kim, Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.43-51
    • /
    • 2007
  • Frost action may cause extensive damage to building, structures, roads, railways and utility lines in seasonal frost. The research about frost heave of natural ground has been considerably performed. In late years various structures have become complicated with the development of social infrastructure maintenance. Therefore countermeasure to frost heave becomes a matter of great importance from a new viewpoint. This study was aimed at catching natural ground frost heaving force quantitatively. Frost heaving forces on circular steel plates which were set on ground surface were measured in field test. The frost heaving forces arise at freezing front propagates to the structures through frozen soil layer. Besides, a full scale model of multi-anchored retaining wall was installed in field, and the freezing lines, frost heave pressure to act on a wall block, and so on were measured. Finally, the position and shape of frost line were estimated by using numerical simulation and a method to determine replacement range was suggested with soil properties and weather data.

Three-dimensional CFD simulation of geyser boiling in high-temperature sodium heat pipe

  • Dahai Wang;Yugao Ma;Fangjun Hong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2029-2038
    • /
    • 2024
  • A deep understanding of the characteristics and mechanism of geyser boiling and capillary pumping is necessary to optimize a high-temperature sodium heat pipe. In this work, the Volume of Fluid (VOF) two-phase model and the capillary force model in the mesh wick were used to model the complex phase change and fluid flow in the heat pipe. Computational Fluid Dynamics (CFD) simulations successfully predicted the process of bubble nucleation, growth, aggregation, and detachment from the wall in the liquid pool of the evaporation section of the heat pipe in horizontal and tilted states, as well as the reflux phenomenon of capillary suction within the wick. The accuracy and stability of the capillary force model within the wick were verified. In addition, the causes of geyser boiling in heat pipes were analyzed by extracting the oscillation distribution of heat pipe wall temperature. The results show that adding the capillary force model within the wick structure can reasonably simulate the liquid backflow phenomenon at the condensation; Under the horizontal and inclined operating conditions of the heat pipe, the phenomenon of local dry-out will occur, resulting in a sharp increase in local temperature. The speed of bubble detachment and the timely reflux of liquid sodium (condensate) replenishment in the wick play a vital role in the geyser temperature oscillation of the tube wall. The numerical simulation method and the results of this study are anticipated to provide a good reference for the investigation of geyser boiling in high-temperature heat pipes.

Analysis of Tensile Force of Nail and Displacement of Soil Nailed Wall at Stepwise Excavation (단계별 굴착시 쏘일네일링 벽체의 변위와 네일의 인장력 분석)

  • 전성곤
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.71-86
    • /
    • 1999
  • The displacements of soil nailed wall and the nail tensile force for 11 soil nailing sites were investigated by using measurements obtained from inclinometer and strain gauge. The maximum horizontal displacement which occurred between 5% and 15% of the final excavation depth was found to be below 0.3% and 0.2% of excavation depth for well and poorly constructed sites. It was also found that the maximum horizontal displacements for 0.4%, 0.3% and 0.2% of excavation depth occurred when the ratios of nail length to final excavation depth were 0.5, 0.5~0.6 and 0.6~0.7. But the maximum horizontal displacement increased by 0.3% of excavation depth when the ratio was above 0.7. This was probably due to the shallow excavation depth and the deep soil stratum. The non-dimensional maximum tensile force of nail, K, from ground surface to $(0.6H_f)$ of the final excavation depth was less than 0.8 and decreased linearly between $(0.6H_f)$ and the final excavation depth. Also, the maximum tensile force was found to reach up to 60% of the ultimate tensile force at final excavation.

  • PDF