• Title/Summary/Keyword: Wall flow

Search Result 2,969, Processing Time 0.032 seconds

Spectral Infrared Signature Analysis of the Aircraft Exhaust Plume (항공기 배기 플룸의 파장별 IR 신호 해석)

  • Gu, Bonchan;Baek, Seung Wook;Yi, Kyung Joo;Kim, Man Young;Kim, Won Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.640-647
    • /
    • 2014
  • Infrared signature of aircraft exhaust plume is the critical factor for aircraft survivability. To improve the military aircraft survivability, the accurate prediction of infrared signature for the propulsion system is needed. The numerical analysis of thermal fluid field for nozzle inflow, free stream flow, and plume region is conducted by using the in-house code. Weighted Sum of Gray Gases Model based on Narrow Band with regrouping is adopted to calculate the spectral infrared signature emitted from aircraft exhaust plume. The accuracy and reliability of the developed code are validated in the one-dimensional band model. It is found that the infrared radiant intensity is relatively more strong in the plume through the analysis, the results show the different characteristic of the spectral infrared signature along the temperature, the partial pressure, and the species distribution. The continuous spectral radiant intensity is shown near the nozzle exit due to the emission from the nozzle wall.

Microscopic Study of the Pig Peri-implantation Embryos (전자현미경에 의한 착상 전후 돼지수정란의 형태학적 변화에 관한 연구)

  • 김진회;백청순;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.2
    • /
    • pp.141-150
    • /
    • 1994
  • Morphological features of the interaction between the hatching blastocyst and implantation in pig were studied by electron microscopy. The observations extended from late blastocyst stage to the completion of trophoblastic erosion of the epithelium and early decidual transformation of the epithelium and early decidual transformation of the stromal cells. Between day 7 and 17 of pregnancy, blastocysts from 0.3 to 12 mm in diameter were flushed from the uterine horns of Dutch Landrace pigs. On the 7th of development in the pig blastocyst, the blastocyst shedded of the zona pellucida established the tips of microvilli and with bleb-like cytoplasmic protrusions of the epithelial cells. From day 11 on in pig embryo, the bilayered trophoblast undergoes a dramatic phase of elongation so that the initially spherical expanded blastocyst becomes tubular. In pig, close apposition to the uterine wall beg-ins at about 12 $^1$/$_2$ days and then attachment occurred during the afternoon of the 16th or 18th day post coitum. At this stage, embryonic loss compared with corpus luteum number is up to 40% of ovulated oocytes. Therefore, the implantation failture of these embryos may be mainly caused by morphological abnormality and failture of zona shedding.

  • PDF

A numerical study on effects of thermal buoyance force on number of jet fans for smoke control (도로터널 화재시 열부력이 제연용 제트팬 댓수에 미치는 영향에 대한 해석적 연구)

  • Yoo, Ji-Oh;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.301-310
    • /
    • 2013
  • Jet fans are installed in road tunnels in order to maintain critical velocity when fire occurs. Generally the number of jet fans against fire are calculated by considering critical velocity and flow resistance by wall friction, vehicle drag force, thermal buoyance force and natural wind. In domestic case, thermal buoyance force is not considered in estimating the number of jet fans. So, in this study, we investigated the pressure loss due to the thermal buoyance force induced by tunnel air temperature rise and the impact of thermal buoyance force on the number of jet fans by the numerical fire simulation for the tunnel length(500, 750, 1000, 1500, 2000, 3500m) and grade (-1.0, -1.5, -2.0%). Considering the thermal buoyance force, number of jet fans have to be increased. Especially in the case of 100MW of heat release rate, the pressure loss due to thermal buoyance force exceed the maximum pressure loss due to vehicle drag resistance, so it is analyzed that number of 2~11 jet fans are needed additionally than current design criteria. Thus, in case of estimating the number of jet fans, it must be considered of thermal buoyance force induced tunnel air temperature rise by fire.

Column Tests for the Design of PRB System using CFW (음식폐기물 탄화재로 충진된 PRB설계법 제안을 위한 컬럼실험)

  • Han, Jung-Geun;Yoon, Won-Il;Jung, Dong-Ho;Kim, Yong-Soo;Lee, Jong-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.35-43
    • /
    • 2011
  • Permeable Reactive Barriers (PRB) method is an economical method that does not require any other methods to be operated once it is installed as it controls of groundwater flow in the barrier, which is inserted a reactive material on the way of pollutant. The major dominant element of PRB is a reactive material in the reactive wall, and such factors as purification efficiency and used time based on the chemical and physical features in between the reactant and pollutant. High purification efficiency can be expected when a rational design that is synthetically considered in features of packing density, operation period, and adsorption reactant of pollutant. A column test was conducted for an application test using CFW as its adsorption reactant in order to remove copper($Cu^{2+}$) in the PRB system. The CFW was used for the reactant and selected inflow speed, density and thickness of PRB as its necessary factors for design of PRB. As a result of the experiment, the removal efficiency decreased as operating time of PRB increased and the efficiency linearly increased upon the length. Therefore, it is confirmed that the thickness of reactive materials in PRB system can be designed using the proposed formula considering purification time and density of CFW.

A Study on Ash Fusibility Temperature of Domestic Thermal Coal Implementing Thermo-Mechanical Analysis (TMA를 이용한 국내 발전용 탄의 용융점 변화에 대한 연구)

  • Lee, Soon-Ho;Lim, Ho;Kim, Sang Do;Jeon, Chung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.233-239
    • /
    • 2014
  • The slagging which generated from ash deposition on furnace wall and tube in boiler reduces the heat transfer efficiency and damages to safety of boiler. The slag flow behavior in boiler is affected by melting temperature which is related to ash compositions. In this study, the behavior of slag is researched by using ash fusibility test, called TMA (Thermo-Mechanical Analysis). The technique measures the percentage shrinkage as the function of temperature, T25%, T50%, T75%, T90%. These temperatures indicate different stages of melting. Then, the effect of ash chemical compositions measured from XRF (X-ray Fluorescence Spectrometer) to ash fusion temperatures is discussed. Among the chemical compositions, refractory and fluxing influence on ash fusibility is described. High levels of refractory component and limited amount of fluxing components ($Fe_2O_3$, $K_2O$, CaO) increase overall melting temperatures. High $SiO_2/Al_2O_3$ ratio decrease high melting temperatures (T75%, T90%). Meanwhile, the presence of reasonable levels of fluxing components reduces overall melting temperature. A presence of fluxing component such as $K_2O$ and CaO is found to decrease the T25% values significantly. From this research, it is possible to make a reasonable explanation and prediction of ash fusion characteristic from analysis of TMA results and ash chemical compositions.

The Versatility of Cheek Rotation Flaps

  • Kim, Kyung Pil;Sim, Ho Seup;Choi, Jun Ho;Lee, Sam Yong;Lee, Do Hun;Kim, Seong Hwan;Kim, Hong Min;Hwang, Jae Ha;Kim, Kwang Seog
    • Archives of Craniofacial Surgery
    • /
    • v.17 no.4
    • /
    • pp.190-197
    • /
    • 2016
  • Background: The cheek rotation flap has sufficient blood flow and large flap size and it is also flexible and easy to manipulate. It has been used for reconstruction of defects on cheek, lower eyelid, or medial and lateral canthus. For the large defects on central nose, paramedian forehead flap has been used, but patients were reluctant despite the remaining same skin tone on damaged area because of remaining scars on forehead. However, the cheek flap is cosmetically superior as it uses the adjacent large flap. Thus, the study aims to demonstrate its versatility with clinical practices. Methods: This is retrospective case study on 38 patients who removed facial masses and reconstructed by the cheek rotation flap from 2008 to 2015. It consists of defects on cheek (16), lower eyelid (12), nose (3), medial canthus (3), lateral canthus (2), and preauricle (2). Buccal mucosa was used for the reconstruction of eyelid conjunctiva, and skin graft was processed for nasal mucosa reconstruction. Results: The average defect size was $6.4cm^2$, and the average flap size was $47.3cm^2$. Every flap recovered without complications such as abnormal slant, entropion or ectropion in lower eyelid, but revision surgery required in three cases of nasal side wall reconstruction due to the occurrence of dog ear on nasolabial sulcus. Conclusion: The cheek rotation flap can be applicable instead of paramedian forehead flap for the large nasal sidewall defect reconstruction as well as former medial and lateral canthal defect reconstruction.

Design Guidlines of Geothermal Heat Pump System Using Standing Column Well (수주지열정(SCW)을 이용한 천부지열 냉난방시스템 설계지침)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Hahn, Chan;Kim, Hyong-Soo;Jeon, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.607-613
    • /
    • 2006
  • For the reasonable use of low grade-shallow geothermal energy by Standing Column Well(SCW) system, the basic requirements are depth-wise increase of earth temperature like $2^{\circ}C$ per every 100m depth, sufficient amount of groundwater production being about 10 to 30% of the design flow rate of GSHP with good water quality and moderate temperature, and non-collapsing of borehole wall during reinjection of circulating water into the SCW. A closed loop type-vertical ground heat exchanger(GHEX) with $100{\sim}150m$ deep can supply geothermal energy of 2 to 3 RT but a SCW with $400{\sim}500m$ deep can provide $30{\sim}40RT$ being equivalent to 10 to 15 numbers of GHEX as well requires smaller space. Being considered as an alternative of vertical GHEX, many numbers of SCW have been widely constructed in whole country without any account for site specific hydrogeologic and geothermal characteristics. When those are designed and constructed under the base of insufficient knowledges of hydrgeothermal properties of the relevant specific site as our current situations, a bad reputation will be created and it will hamper a rational utilization of geothermal energy using SCW in the near future. This paper is prepared for providing a guideline of SCW design comportable to our hydrogeothermal system.

Measurement and Analysis of Bed Shear Stresses in Compound Open Channels using the Preston Tube (프레스톤튜브를 이용한 복단면 하도의 하상전단응력 측정 및 분석)

  • Lee, Du Han;Kim, Myounghwan;Kim, Won;Seo, Il Won
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.4
    • /
    • pp.207-215
    • /
    • 2017
  • Hydraulic issues such as flow resistance, side wall correction, sediment, erosion and deposition, and channel design have close relation with distribution of bed shear stresses but the measurement of the distribution of bed shear stresses is not easy. In this study the Preston tube which makes possible relatively simple measurement of bed shear stresses is used to analyze the characteristics of bed shear distribution in compound open channels with different depth ratio. The Preston tubes are made and calibrated to develop the calibration formula and then they are applied to measure bed shear stress distribution in 5 cases depth ratio condition of compound channels. The results are compared with former experiment data, and characteristics of bed shear stress distributions are studied with different channel scales and Reynolds numbers. Although bed shear distributions with depth ratio show overall agreement with former studies, some differences are verified in bed shear variation, formation of inflection point in main channel, and distribution near floodplain junction which are due to high Reynolds number. Through the study applicability of the Preston tubes are also verified and characteristics of bed shear distribution in compound channels are suggested with Reynolds number and depth ratio.

Angiogenic Responce to Transmyocardial Mechanical Reveascularization(TMMR) with Polymer Myocardial Stent (고분자 중합체 심근 스템트를 이용한 기계적 경심근 혈류재건술의 혈관생성 반응)

  • Choi, Ho;Lee, Cheol-Joo;Moon, Kwang-Deok;Kim, Young-Jin;Kang, Joon-Kyu;Hong, Jun-Wha;Jee, Kyung-Soo;Han, Man-Jung;Cho, Sang-Ho
    • Journal of Chest Surgery
    • /
    • v.33 no.6
    • /
    • pp.494-501
    • /
    • 2000
  • Background: Transmyocardial laser revascularization(TMLR) for revascularizing ischemic myocardium in patients was originally based on the assumption that laser channels remain their patency much longer. But recent studies show that laser channels did not remain open and that TMLR could achieve treatment benefits without long-term channel patency. The angiongencesis is currently thought to be induced by non-specific inflammatory response to mechanical tissue injury. This study is to evaluate hypothesis that various transmyocaridal mechanical revascularization(TMMR) may induce the angiogenic responses similar to that seen with TMLR, and transmyocaridal polymer stent revascularization(TMSR), the polymer stent in the myocardial tissue is hydrolyzed in 2 weeks, may enhance the non-specific inflammatory reaction resulting angiogenesis. Furthermore, polymer myocaridal stent channels remain long-term patency. Material and Method: Eight domestic pigs underwent ligation of the proximal circumflex artery, and 2 weeks later they were randomized to undergo transmycardial acupunctural revascularization (TMPR, Group I) of the left lateral wall with 18-G needle(n=2), to undergo transmyocardial (TMDR, Group II) with industrial 2mm steel drill(n=2), to undergo transmyocardial polymer stent revascularization (TMSR, Group III) after drilling the infarcted myocardium(n=2), the stent is poly(lactic acid-co-glycolic acid), which is self-degradated in the myocardium, and to a control group the ischemic zone was unterated(n=2). All the pigs were sacrificed after 4 weeks TMMR. Sections from the ischemic zone were submitted for vascular endothelial growth factor (VEGF) ELISA and histology. Result: There were makedly increase in the VEGF immunoassay in the ischemic zone of the TMMR group compared to the ischemic zone of the control group(control: each 30.85 and 43.15pg/mg protein, TMPR: each 44.14 and 68.61 pg/mg protein, TMDR: each 65.92 and 78.65 pg/mg protein, TMSR: each 177.39 and 168.87 pg/mg protein). TMSR channels caused greatest VEGF expression than channels made by other group and the polymer stent channels remained vacuole after 4 weeks. Conclusion: Transmyocardial polymer stent revascularization promoted the most angiogenci response by the VEGF immunoassay, although our study did not show the statistical significancy. The channels remained but the flow patency was not verified. Transmyocardial polymer stent revascularization (TMSR) is desirable in future experimental trials and in view of the significant cost implications comparable to that of laser.

  • PDF

Analysis on Attraction Power and Holding Power of Exhibition Areas at Science Museum(II) - Focused on Analysis on Exhibition Method of Exhibition Spaces - (과학계 박물관 전시공간의 흡입력과 지속력 분석(II) - 전시영역별 연출매체의 분포특성 분석을 중심으로 -)

  • Lim, Che-Zinn;Choo, Sung-Won;Park, Moo-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.4
    • /
    • pp.174-182
    • /
    • 2011
  • This study analyzed visitors' behaviors in the viewpoint of Attraction Power and Holding Power of exhibits on the basis of exhibition layout of real science museums. Through the analysis, the study grasped efficiency of analysis index and exhibition environment elements which might have an effect on planning the exhibition space of a large-scale museum and producing detailed ranges of exhibition. The main indicators used are: 1. Attraction Power: it indicates the relative incidence of people who have stopped in front of an object/exhibit during the exhibition tour. It is calculated by dividing the number of people who stop by the total number of people who have visited the museum or gallery. 2. Holding Power: it measures the average time spent in front of an information/communication element. It is calculated by dividing the average time of stay by the time "necessary" to read an element. As a result of analyzing the exhibition areas of National Science Museum (Daejeon) and National Museum of Emerging Science and Innovation(Tokyo), the Holding Power was found to be relatively lower than the Attracting Power. This means that 3.5 out of 10 visitors stop in front of the exhibit in 6 exhibition areas, and among these, only 1/10 is used when compared to the user required time of the exhibits. In other words, like the method of deriving an analysis index, the stage of viewing can be categorized as Attracting Power and Holding Power, and because the stage from Attracting Power to the stage of Holding Power are strongly linked, it shows that it is not easy to display a meaningful result. Except, the general distribution of Attracting Power was shown to be high from the entrance area of the exhibition hall based on the standard of viewing sequence. Also, the Holding Power became sequentially lower according to the sequence of exhibition viewing and displayed a meaningful interrelationship with the distribution ratio of island exhibits. In the case of island exhibition method, it is less influenced by the movement flow of visitors when compared to the wall type method of exhibition and can be understood as an exhibition method that provides spatial chances enabling stopping and viewing.