• 제목/요약/키워드: Wall condensation

검색결과 187건 처리시간 0.022초

초음속 노즐에서 발생하는 응축충격파 진동의 피동제어 (Passive Control of the Condensation Shock Wave Oscillation in a Supersonic Nozzle)

  • 백승철;권순범;김희동
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.951-958
    • /
    • 2002
  • Rapid expansion of a moist air or a stream through a supersonic nozzle often leads to non-equilibrium condensation shock wave, causing a considerable energy loss in flow field. Depending on amount of latent heat released due to non-equilibrium condensation, the flow is highly unstable or a periodical oscillation accompanying the condensation shock wave in the nozzle. The unsteadiness of the condensation shock wave is always associated with several kinds of instabilities as well as noise and vibration of flow devices. In the current study, a passive control technique using a porous wall with a plenum cavity underneath is applied for the purpose of alleviation of the condensation shock oscillations in a transonic nozzle. A droplet growth equation is coupled with two-dimensional Navier-Stokes equation system. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. An experiment using an indraft wind tunnel is made to validate the present computational results. The results show that the oscillations of the condensation shock wave are completely suppressed by the current passive control method.

공동주택 결로 하자 사례를 통한 개선방안 도출 (Study on the Improvement Plans of Condensation Defect Examples in Apartment Building)

  • 오세민;박선효;정광섭
    • 설비공학논문집
    • /
    • 제29권2호
    • /
    • pp.82-88
    • /
    • 2017
  • There are main issues of defect type that condensation, concrete crack and noise in apartment buildings. Especially, according to the Apartment Defect Dispute Mediation Committee in Korea (ADDMC) at Ministry of Land Infrastructure and Transport in Korea (MLIT), condensation defects are great importance (14 percent) on whole number of reported cases of faults from 2015 in Korea. Most condensation defects have many different causes that take a toll on the resident's life and space. So it is very important to early detection and repair. For preventing the condensation in apartment buildings, there are building codes in Korea such as 'Standard of Method and Judgment for Apartment defect of investigation, Repair cost Estimate'. This research aims to study on the improvement of preventing the condensation aforementioned korea standard. Types and characteristics (opaque wall, windows, doors) of cause of occurrence and existing state condensation defect is analyzed from evaluation of real application 100 case in 2015 ADDMC data.

벽식구조물의 효율적인 연직진동해석 (Efficient Floor Vibration Analysis in A Shear Wall Building Structure)

  • 김현수;이동근
    • 한국지진공학회논문집
    • /
    • 제8권6호통권40호
    • /
    • pp.55-66
    • /
    • 2004
  • 현재 국내에서는 벽과 바닥판만으로 이루어진 벽식 구조형식의 아파트 건물이 많이 건설되고 있다. 아파트와 같은 주거구조물에서는 다양한 진동원에 의하여 진동이 발생하고 이러한 진동은 벽과 바닥판을 통하여 이웃한 세대 및 위, 아래층 세대로 전달되게 된다. 벽식구조물의 진동해석을 정확하게 수행하기 위해서는 벽과 바닥판을 많은 수의 유한요소로 세분한 모델을 사용하는 것이 필요하다. 그러나 아파트와 같은 벽식구조물 전체를 수많은 유한요소로 세분하여 모형화하면 막대한 해석시간과 컴퓨터 메모리가 필요하게 된다. 따라서 본 연구에서는 상당히 줄어든 해석시간과 컴퓨터 메모리를 사용하여 정확한 해석결과를 얻기 위하여 행렬응축기법으로 벽과 바닥판에 수직인 자유도만 가지는 효율적인 진동해석 모델을 제안한다. 벽식구조물에서 벽과 바닥에 수직인 자유도만을 남기고 나머지 자유도를 행렬응축기법을 통하여 한꺼번에 소거를 한다면 행렬응축과정에서 상당히 많은 양의 시간이 소요된다. 따라서 본 연구에서는 벽이나 바닥판에 수직인 자유도만을 가진 수퍼요소를 생성한 후 이를 조합하여 한 층을 나타내는 부분구조를 만들고 최종적으로 부분구조를 조합하여 전체 구조물을 구성하는 모형화 기법을 제안하였다. 제안된 해석기법의 정확성과 효율성을 검증하기 위하여 3층 및 5층의 벽식구조물을 예제구조물로 사용하여 동적해석을 수행하였다. 예제해석 결과 제안된 해석방법의 결과는 절점당 6개의 자유도를 모두 사용한 해석모델의 결과와 비슷한 정확성을 보이면서도 소요되는 해석시간과 컴퓨터 메모리를 대폭 줄일 수 있었다.

Thermal Analysis of Wall/Floor Intersections in Building Envelope

  • Ihm, Pyeongchan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권2호
    • /
    • pp.97-107
    • /
    • 2004
  • Wall/floor intersection is important parts of a building envelope system. These intersections can be sources of thermal bridging effects and/or moisture condensation problems. This paper provides a detailed analysis of the thermal performance of wall/floor intersection. In particular, two-dimensional steady-state and transient solutions of the heat conduction within the wall/floor joint are presented. Various insulation configurations are considered to determine the magnitude of heat transfer increase due to wall/floor joint construction.

평판의 층류 막응축에서 복합열전달에 대한 근사해 (Approximate Solution for Conjugate Heat Transfer of Laminar Film Condensation on a Flat Plate)

  • 이억수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.509-518
    • /
    • 2005
  • Liquid film thickness in laminar film condensation for flow over a flat plate generally is so thin that both fluid acceleration and thermal convection within the liquid film can be neglected. An integral solution method is proposed to solve the conjugate problems of laminar film condensation and heat conduction in a solid wall. It is found that approximate solutions of the governing equations involve four physical parameters to describe the conjugate heat transfer problem for laminar film condensation. It is shown that the effects of interfacial shear. mass transfer and local heat transfer are strongly dependent on the thermo-physical properties of the working fluids and the Jacob number.

천음속 노즐에서 발생하는 응축충격파의 피동제어 (Passive Control of Condensation Shock Wave in a Transonic Nozzle)

  • 김희동;백승철;권순범
    • 대한기계학회논문집B
    • /
    • 제26권5호
    • /
    • pp.666-674
    • /
    • 2002
  • A rapid expansion of the moist air or stream through transonic nozzle often leads to not-equilibrium condensation shock, causing a considerable amount of energy loss to the entire flow field. Depending on amount of heat released, condensation shock wave occurs in the nozzle and interacts with the boundary layer flow. In the current study, a passive control technique using a porous wall with a plenum cavity underneath is applied for purpose of alleviation the condensation shock wave in a transonic nozzle. A droplet growth equation is incorporated into two-dimensional wavier-Stokes equation systems. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. An experiment using an indraft transonic wind tunnel is made to validate the present computational results. The results obtained show that the magnitude of condensation shock wave is reduced by the current passive control method.

수평관 외벽에서 친수성 표면처리가 응축열전달에 미치는 영향 (Effects of Hydrophilic Surface Treatment on Condensation Heat Transfer at the Outside Wall of Horizontal Tube)

  • 황규대;박노성;강병하
    • 설비공학논문집
    • /
    • 제12권6호
    • /
    • pp.533-540
    • /
    • 2000
  • Condensation heat transfer characteristics have been investigated experimentally when a water vapor is condensed on the outside of a horizontal copper tube in a condenser. This problem is of particular interest in the design of a LiBr-water absorption system. Hydrophilic surface modification was performed to increase the wettability on the copper tube. The optimum hydrophilic treatment condition using acethylene and nitrogen as reaction gas is also studied in detail. The results obtained indicate that the optimum reaction gas ratio of acethylene to nitrogen for hydrophilic surface modification was found to be 7 : 3 for the best condensation heat transfer. In the wide ranges of coolant inlet temperatures, and coolant mass flow rates, both the condensation heat transfer rate and the condensation heat transfer coefficient of a hydrophilic copper tube are increased substantially, compared with those of a conventional copper tube used in a condenser. It is also found that the condensation heat transfer enhancement by the hydrophilic surface modification still emains even after a hundred cycles of wet/dry processes.

  • PDF

겨울철 공동주택에서 붙박이장 내 보조난방장치를 활용한 결로 저감 효과 평가 (Assessment of Utilization of Auxiliary Heating Device for Prevention of Condensation in Built-in Furniture in Winter)

  • 이현화;임재한;송승영
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.99-106
    • /
    • 2017
  • Recently, the condensation and mold problems of apartment buildings has been growing due to high insulation and high air-tightness performance for energy saving. Most of all, occupants in residential buildings has suffered from property damages due to the condensation and mold of built-in furniture. Condensation at built-in furniture were generally found in winter at the of furniture's back panels, adjacent surfaces of wall, floor and ceiling. The aim of paper is to analyze the characteristics of adjacent area around built-in furniture's condensation problem and the thermal environment around the built-in furniture in winter through the field measurements at apartment buildings. In this research, the thermal conditions and surface temperature around the built-in furniture were measured during winter season. In this research, we analyzed thermal conditions for built-in furniture which were applied and not applied auxiliary heating device. In results, it is important to consider increasing surface temperature for using heater and decreasing absolute humidity due to the occupants' behavior around built-in furniture for preventing condensation.

기존 공동주택 붙박이장에서 겨울철 결로 방지를 위한 보조난방장치 운전 성능 평가 (Operation Performance Evaluation on Auxiliary Heating Device to Prevent Condensation adjacent to Built-in Furniture of Apartment Units in Winter)

  • 이채린;이현화;임재한;송승영
    • 한국건축친환경설비학회 논문집
    • /
    • 제12권6호
    • /
    • pp.567-578
    • /
    • 2018
  • The purpose of this study was to evaluate condensation prevention for condensation vulnerable areas around built-in furniture of apartment buildings by applying auxiliary heating device. Recently, the condensation and mold problems of apartment buildings has been growing due to high insulation and high air-tightness performance for energy saving. Condensation at built-in furniture were generally found in winter at the of furniture's back panels, adjacent surfaces of wall, floor and ceiling. These problems are related to the weather conditions and indoor room conditions in winter. To solve these problems, auxiliary heating device was developed and could be installed. The aim of paper is to analyze the thermal environment around the built-in furniture which were applied and not applied auxiliary heating device in winter. In results, it was possible to increase the surface temperature of vulnerable areas around built-in furniture by applying auxiliary heating device, and to minimize condensation problems by using the minimum device.

Boundary layer measurements for validating CFD condensation model and analysis based on heat and mass transfer analogy in laminar flow condition

  • Shu Soma;Masahiro Ishigaki;Satoshi Abe;Yasuteru Sibamoto
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2524-2533
    • /
    • 2024
  • When analyzing containment thermal-hydraulics, computational fluid dynamics (CFD) is a powerful tool because multi-dimensional and local analysis is required for some accident scenarios. According to the previous study, neglecting steam bulk condensation in the CFD analysis leads to a significant error in boundary layer profiles. Validating the condensation model requires the experimental data near the condensing surface, however, available boundary layer data is quite limited. It is also important to confirm whether the heat and mass transfer analogy (HMTA) is still valid in the presence of bulk condensation. In this study, the boundary layer measurements on the vertical condensing surface in the presence of air were performed with the rectangular channel facility WINCS, which was designed to measure the velocity, temperature, and concentration boundary layers. We set the laminar flow condition and varied the Richardson number (1.0-23) and the steam volume fraction (0.35-0.57). The experimental results were used to validate CFD analysis and HMTA models. For the former, we implemented a bulk condensation model assuming local thermal equilibrium into the CFD code and confirmed its validity. For the latter, we validated the HMTA-based correlations, confirming that the mixed convection correlation reasonably predicted the sum of wall and bulk condensation rates.