• Title/Summary/Keyword: Wall condensation

Search Result 187, Processing Time 0.026 seconds

The Study of Supersonic Flow with Condensation Along a Wavy Wall in a Channel (波形壁 流路내에서 凝縮이 수반되는 超音速유동에 대한 硏究)

  • 권순범;김병지;김흥균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.424-431
    • /
    • 1994
  • The characteristics of supersonic flow with condensation along a wavy wall of a small Smplitude in a channel is investigated experimentally and numerically. In the present study for the case of supersonic moist air flow, the dependency of location of reflection of oblique shock wave generated by the wavy wall, and the distributions of flow properties in the flow field, on the stagnation relative humidity and temperature is clarified by the plots of streamline, iso-Mach number and iso-flow properties of numerical result and the schlieren photographs of experiment. And. experimental and numerical results are in good agreement.

A Passive Control of Interaction of Condensation Shock Wave anc Boundary Layer(I) (응축충격파와 경계층 간섭의 피동제어(I))

  • Choe, Yeong-Sang;Jeong, Yeong-Jun;Gwon, Sun-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.316-328
    • /
    • 1997
  • There were appreciable progresses on the study of shock wave / boundary layer interaction control in the transonic flow without nonequilibrium condensation. But in general, the actual flows associated with those of the airfoil of high speed flight body, the cascade of steam turbine and so on accompany the nonequilibrium condensation, and under a certain circumstance condensation shock wave occurs. Condensation shock wave / boundary layer interaction control is quite different from that of case without condensation, because the droplets generated by the result of nonequilibrium condensation may clog the holes of the porous wall for passive control and the flow interaction mechanism between the droplets and the porous system is concerned in the flow with nonequilibrium condensation. In these connections, it is necessary to study the condensation shock wave / boundary layer interaction control by passive cavity in the flow accompanying nonequilibrium condensation with condensation shock wave. In the present study, experiments were made on a roof mounted half circular arc in an indraft type supersonic wind tunnel to evaluate the effects of the porosity, the porous wall area and the depth of cavity on the pressure distribution around condensation shock wave. It was found that the porosity of 12% which was larger than the case of without nonequilibrium condensation produced the largest reduction of pressure fluctuations in the vicinity of condensation shock wave. The results also showed that wider porous area, deeper cavity for the same porosity of 12% are more favourable "passive" effect than the cases of its opposite. opposite.

Comparative Analysis of Models for Free Convective Film Condensation on an Isothermal Vertical Wall (등온 수직벽의 자연대류 막응축 모델에 관한 비교분석)

  • Sung, Hyun-Chan;Kim, Kyoung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1380-1387
    • /
    • 2000
  • The existing theoretical models for steady two-dimensional free convective laminar film condensation of pure saturated or superheated vapor under atmospheric pressure on isothermal vertical wall have been reviewed. To investigate the effects such as inertia, thermal convective and liquid-vapor interface shear stress, the models of constant or variable properties in liquid film for condensation of saturated vapor are compared in detail with Nusselt model. Also, for condensation of superheated vapor, the effects of superheated temperature and variable properties in liquid and vapor layers are examined and then a new correlation is proposed to predict the heat transfer. The results are in good agreement with the Shang's correlation within 2% errors.

Comparative Analysis of Models for Free Convective Film Condensation on an Isothermal Vertical Wall (등온 수직벽의 자연대류 막응축 모델에 관한 비교분석)

  • Sung, Hyun-Chan;Kim, Kyoung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.31-36
    • /
    • 2000
  • The existing theoretical models for steady two-dimensional free convective laminar film condensation or pure saturated or superheated vapor under atmospheric pressure on isotheraml vertical wall have been reviewed. To investigate the effects of inertia, thermal convective and liquid-vapor interface shear stress, the models of constant or variable properties in liquid film for condensation of saturated vapor are compared in detail with Nusselt model. Also, for condensation of superheated vapor the effects of superheated temperature and variable properties in liquid and vapor layer are examined and then new correlation is proposed to predict the heat transfer. The results are in good agreement with the Shang's correlation within 2% errors.

  • PDF

An Experimental Study on Insulation and Preventing Condensation Performance of Ventilated Curtain Wall (Mock-up 실험을 통한 통기성 커튼월의 단열 및 결로방지 성능평가)

  • Lee, Mi-Jin;Lee, Sun-Woo;Yeo, Myoung-Souk;Kim, Kwang-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1081-1086
    • /
    • 2006
  • Curtainwall systems has been applied to buildings widely for constructability. However, as cutainwall system include many building materials, they become to damaged vapor barrier and incur condensation. Natural ventilation of an air cavity in a curtainwall is expected to be an prevention of condensation in inner wall and reduce cooling energy in summer. The objective of this experimental study is to evaluating the insulation and condensation Performance of ventilated curtainwall with ventilated cavity depth and ratio of opening area.

  • PDF

Condensation Heat Transfer Characteristics of R-134a with Wall Thickness and Surface Roughness on Stainless Steel Horizontal Plain Tubes (스테인리스 평활관의 관 두께 및 표면거칠기에 따른 R-134a 의 관외측 응축 열전달 특성 연구)

  • Heo, Jae-Hyeok;Yun, Rin;Lee, Yong-Taek;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1203-1210
    • /
    • 2006
  • The filmwise condensation heat transfer coefficients of R-134a on the horizontal copper and stainless steel tubes were measured and analyzed. The outside diameter of the tubes was 15.88 mm, and the tube thickness ranged from 0.89 to 1.65 mm. The polished stainless steel tube had an RMS surface roughness($R_q$) of 0.37 $\mu$m, and commercial stainless steel tubes had an surface roughness($R_q$) of 1.855 $\mu$m. The tests were conducted at the saturation temperatures of 20 and $30^{\circ}C$, and the liquid wall subcoolings from 0.4 to $2.1^{\circ}C$. The measured condensation heat transfer coefficients were significantly lower than the predicted data by the Nusselt analysis. This trend in the stainless steel tube was explained by the effects of thermal resistance of tube material and surface roughness. Based on the experimental data with respect to wall thickness and surface roughness, it was suggested that the existing correlation on external condensation should be modified by considering material and surface roughness factors. The revised correlation was developed by introducing the effects of wall thickness and surface roughness into the Nusselt equation. The average deviation of the revised correlation was 13.0 %.

Passive Control of the Condensation Shock Wave Using Bleed Slots

  • Kim, H.D.;Lee, K.H.;Setoguchi, T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.299-304
    • /
    • 2001
  • The current study describes experimental and computational work on the passive control of the steady and unsteady condensation shock waves, which are generated in a transonic nozzle. The bleed slots are installed on the contoured wall of the transonic nozzle in order to control the magnitude of the condensation shock wave and its oscillations. For computations, a droplet growth equation is incorporated into the two-dimensional Navier-Stokes equation systems. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order tractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. An experiment using an indraft transonic wind tunnel is made to validate the computational results. The current computations represented well the experimental flows. From both the experimental and computational results it is found that the magnitude of the condensation shock wave in the bleed slotted nozzle is significantly reduced, compared with no passive control of solid wall. The oscillations of the condensation shock wave are successfully suppressed by a bleed slot system.

  • PDF

A Passive Control of Interaction of Condensation Shock Wave anc Boundary Layer(II) (응축충격파와 경계층 간섭의 피동제어(II))

  • Choe, Yeong-Sang;Gwon, Sun-Beom;Kim, Byeong-Ji
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.329-340
    • /
    • 1997
  • A passive control of interaction of condensation shock wave / boundary layer for reducing the strength of condensation shock was conducted experimentally in a 2.5 * 8 cm$^{2}$ indraft type supersonic wind tunnel. The effects of following factors on passive control were investigated: 1) the thickness of porous wall, 2) the diameter of porous hole, and 3) the orientation of porous hole. On the other hand, the location of nonequilibrium condensation region and condensation shock wave was controlled by regulation of the stagnation conditions. Surface static pressure measurements as well as Schlieren observations of the flow field were obtained, and their effects were compared with the results the cases of without passive control. It was found that thinner porous wall, smaller porous hole and FFH orientation for the same cavity size and porosity of 12% are more favourable than the cases of its opposite.

Passive Control of the Condensation Shock Wave Using Bleed Slots (Bleed Slot을 사용한 응축충격파의 피동제어)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.997-1004
    • /
    • 2002
  • The current study describes experimental and computational works on the passive control of the steady and unsteady condensation shock waves, which are generated in a transonic nozzle. The bleed slots are installed on the contoured wall of the transonic nozzle in order 10 control the magnitude of the condensation shock wave and its oscillations. For computations, a droplet growth equation is copuled with two-dimensional Navier-Stokes equation systems. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. An experiment using an indrafi transonic wind tunnel is made to validate the computational results. The current computations represented well the experimental flows. From both the experimental and computational results it is found that the magnitude of the condensation shock wave in the bleed slotted nozzle is signi ficantly reduced, compared with no passive control of solid wall. The oscillations of the condensation shock wave are successfully suppressed by a bleed slot system.

Cold Wall Condensation Retardation of Laser Excited Gaseous Molecules (레이저 여기된 기체분자들의 차가운 표면 응고저지 현상)

  • Kim Jae-U;Jeong Do-Yeong;Jeff W. Eerkens;William H. Miller
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.248-249
    • /
    • 2002
  • The gaseous molecular condensation retardation by laser excitation has been known, but with limited success. Condensation inhibition between the gas phase molecules by laser excitation was clearly shown in many experiments.(1)-(2) However, surface condensation inhibition of the excited molecules has been controversial for the last several decades.(3)-(4) In 1994, S. J, Sibener and Y. T. Lee published an experimental evidence of the internal energy dependence of the surface condensation of gaseous $SF_{6}$ and $CCl_4$ molecules. (omitted)

  • PDF