• Title/Summary/Keyword: Wall Jet

Search Result 363, Processing Time 0.036 seconds

An Improvement of Welding Method for the Corrugated Stainless Steel Tubing(CSST) (가스용 금속 플렉시블 호스의 용접방법 개선에 관한 연구)

  • Kim, Wan-Jin;Yi, Yeong-Seop;Choi, Jin-Lim
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.79-83
    • /
    • 2008
  • The corrugated stainless steel tubing(CSST) for the fuel gas piping system can be installed easily and quickly. It is often constructed under the ceiling and the wall which has a good flexibility and installation in comparison with iron pipe. However, the quality of the CSST is determined to depend upon the welding skill of stainless steel tubing. In this study, it is tested by controlling jet point of Ar as inert and cooling gas, and also compared with the bead state of welding point and the performance. As a result, it has the best condition when the jet point of Ar is located behind $5{\sim}10mm$ of the welding point.

A Numerical Study on the Effects of Drug Ejection Velocity on Endovascular Thrombolysis

  • Jeong Woo Won;Rhee Kyehan
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.157-161
    • /
    • 2005
  • Direct injection of a fibrinolytic agent to the intraarterial thrombosis may increase the effectiveness of thrombolysis by enhancing the permeation of thrombolytic agents into the blood clot. Permeation of fibrinolytic agents into a clot is influenced by the surface pressure, which is determined by the injection velocity of fibrinolytic agents. In order to calculate the pressure distribution on the clot surface for different jet velocities (1, 3, 5 m/sec) and nozzle arrangements (1, 9, 17 nozzles), computational fluid dynamic methods were used. Thrombolysis of a clot was mathematically modeled based on the pressure and lysis front velocity relationship. Direct injection of a thrombolytic agent increased the speed of thrombolysis significantly and the effectiveness was increased as the ejecting velocity increased. The nine nozzles model showed about $20\%$ increase of the lysed volume, and the one and seventeen nozzles models did not show significant differences. The wall shear stress decreased as the number of nozzles increased, and the wall shear stress in most vessel wall was lower than 25 Pa. The results implied that thrombolysis could be accelerated by direct injection of a drug with the moderate velocity without damaging the blood vessel wall.

Design Modification and Correlation Verification between Reattachment Flow of Dispersed Jet and Local Thinning of Feedwater Heater (충돌로 인해 분산된 2상 제트스팀의 재부착 현상과 국부 감육 상관관계 규명 및 설계개선에 관한 연구)

  • Kim, Hyung-Joon;Kim, Kyung-Hoon;Hwang, Kyeong-Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.483-495
    • /
    • 2009
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damange, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line-inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied squared, curved and new type impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis.

A Study on Effective Correction of Internal Drag and Wall Interference Using Response Surface in Wind Tunnel Test (풍동시험에서 반응면을 이용한 내부 항력 및 벽면 효과의 효율적 보정방안 연구)

  • Kim, Junemo;Lee, Yeongbin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.637-643
    • /
    • 2019
  • Wind tunnel testing for flow-through model is necessary for performance prediction of an aircraft with air-breathing jet engine. Internal drag correction and wall correction are performed to acquire preciser wind tunnel test data. Many test runs are generally required to correct internal drag and wall interference in wind tunnel test. In this study we investigated more effective correction schemes using the response surface method. Even though the number of tests required for these schemes was much smaller than that for conventional methods, the differences between corrections using these schemes and conventional methods were similar level with the uncertainty of measurement except for the data near the boundaries.

Heat Transfer Measurement by a Round Jet Impinging on a Rib-Roughened Concave Surface (표면조도를 가지는 오목한 면에 충돌하는 원형제트에 의한 열전달 측정)

  • Lee, Dae Hee;Won, Se Youl;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.734-743
    • /
    • 1999
  • The local Nusselt numbers have been measured for a round turbulent jet impinging on the concave surface with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured using liquid crystal and a digital color image processing system. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 4 to 10, the dimensionless surface curvature (d/D) 0.056, and the rib type (height ($d_1$) 0.2 cm, pitch (p) from 1.2 to 3.2 cm). It was founded that only when $L/d{\geq}6$, the average Nusselt numbers on the concave surface with rib are higher than those without rib, mainly due to an increase in the turbulent intensity caused by the effect of rib attached to the wall surface. It was realized that the rib attached to the concave surface may no longer enhance the heat transfer rate or even lowers it depending on the rib type and flow conditions. In addition, the results by the steady-state method using the gold-film Intrex were in good agreement with those by the transient shroud method.

A Study on Propulsion Performance of Underwater Ram-Jet with Optimized Nozzle Configuration (최적 노즐형상을 갖는 수중램제트의 추진성능에 관한 연구)

  • Kang, H.K.;Kim, Y.T.;Lee, Y.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.42-52
    • /
    • 1997
  • The basic principle of underwater ram-jet as a unique marine propulsion concept showing vary high cruise speed range(e. g. 80-100 knots) is the thrust production by the transfer of the potential energy of compressed gas to the operating liquid through kinetic mixing process. This paper is aimed to investigate the propulsive efficiency of the nozzle flow in underwater ram-jet at the speed of 80 knots for the buried type vessel. The basic assumption of the theoretical analysis is that mixture of water and air can be treated as incompressible gas. For an optimized nozzle configuration obtained from the performance analysis, preliminary data for performance evaluation are obtained and effects of nozzle inner wall friction, ambient temperature, ambient pressure, water density, gas velocity, bubble radius, flow velocity, diffuser area ratio, mass flow ratio and water velocity gradient are investigated.

  • PDF

Rotordynamic Analysis of Compressor Labyrinth Seals (압축기용 라비린스 실의 동특성 해석)

  • 하태웅;이안성
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.849-855
    • /
    • 1998
  • An analysis of lateral hydrodynamic forces of compressor labyrinth seals is presented. Basic equations are derived using a two-control-volume model for compressible flow. Blasius' wall friction-factor formula and jet flow theory are used for the calculaton of wall shear stresses and recirculation velocity in the cavity. Linearized zeroth-order and first-order perturbation equations are developed for a small motion about the centered position by expansion in the eccentricity ratio. Integraton of the resultant first-order pressure distribution over the seal defines the rotordynamic coefficients. As an application a rotordynamic analysis of the balance drum labyrinth seal found in an ethylene regrigeration copmressor is carried out. The rotordynamic characteristic results of the labyrinth seal are presented and compared with other types of seals, honeycomb seal and smooth seal.

  • PDF

A Study on the Effects of Induced Mixture Flows and the Stratified Charge for a Lean Burn (희박연소를 위한 혼합기의 성층급기와 유동에 관한 연구)

  • 전대수;이태원;윤수한;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • In the present study, the IDI-type constant volume chamber, which utilizes the indirect injection stratified charge method, is used to solve several problems including misfires and cycle-variations caused by unstable initial ignitions. A subchamber has been used to make an ignitable mixture under the low mean equivalence ratio. After burned in the subchamber, the flame jet getting through the passage hode enters the main chamber and burns the lean charge. There are many factors which affect the combustion characteristics of the indirect injection stratified engine. The passage hole angle is the most important since it determines the direction of flame flows into the main chamber. In the present study, we measured the combustion pressure, and the wall temperature, and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on passage hole angle and the equivalence ratio.

  • PDF

Patterning of Single-wall Carbon Nanotube using Ink-jet Printing (잉크젯 프린팅에 의한 단일벽 탄소나노튜브의 패터닝)

  • Song, Jin-Won;Yoon, Yeo-Hwan;Han, Chang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.236-237
    • /
    • 2007
  • A single-wall carbon nanotube (SWNT) transparent conductive film (TCF) was fabricated using a simple inkjet printing method. The TCF could be selectively patterned by controlling the dot size to diameters as small as 34${\mu}m$. In thisrepeatable and scalable process, we achieved 71% film transmittance and a resistance of 900 ohm/sq sheet with an excellent uniformity, about $\pm$5% deviation overall. Inkjet printing of SWNT is substrate friendly and the TCF is printed on a flexible substrate. This method of fabrication using direct printing permits mass production of TCF in a large area process, reducing processing steps and yielding low-cost TCF fabrications on a designated area using simple printing.

  • PDF

Rotordynamic Analysis for Labyrinth Seals Used in Compressors (압축기용 라비린스 실의 동특성 해석)

  • 하태웅;이안성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.138-144
    • /
    • 1997
  • The analysis of lateral hydrodynamic forces from the compressor labyrinth seals is presented. The basic equations are derived using a two-control-volume model for compressible flow. Blasius' wall friction-factor formula and jet flow theory are used for the calculation of the wall shear stresses and the recirculation velocity in the cavity. Linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the labyrinth seal. The rotordynamic analysis for the balance drum labyrinth seal of an ethylene refrigeration compressor is carried out. The results of rotordynamic characteristic of the labyrinth seal and comparisons with other types of seal, honeycomb seal and smooth seal, are presented.

  • PDF