• Title/Summary/Keyword: Wall Interference Effect

Search Result 30, Processing Time 0.022 seconds

UNSTEADY WALL INTERFERENCE EFFECT ON FLOWS AROUND AN OSCILLATING AIRFOIL IN CLOSED TEST-SECTION WIND TUNNELS (폐쇄형 풍동 시험부내의 진동하는 익형 주위 유동에 대한 비정상 벽면효과 연구)

  • Kang Seung-Hee;Kwon Oh Joon;Hong Seung-Kyu
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.60-68
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a forced oscillating airfoil in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The Spalart-Allmaras one-equation model is employed for the turbulence effect. The computed results of the oscillating airfoil having a thin wake showed that the lift curve slope is increased and the magnitude of hysteresis loop is reduced by the interference effects. Since the vortex around the airfoil is generated and convected downstream faster than the free-air condition, the phase of lift, drag and pitching moment coefficients was shifted. The pressure on the test section wall shows harmonic terms having the oscillating frequency contained in the wail effect.

Navier-Stokes Analysis of Pitching Delta Wings in a Wind Tunnel

  • Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • A numerical method for the assessment and correction of tunnel wall interference effects on forced-oscillation testing is presented. The method is based on the wall pressure signature method using computed wall pressure distributions. The wall pressure field is computed using unsteady three-dimensional full Navier-Stokes solver for a 70-degree pitching delta wing in a wind tunnel. Approximately-factorized alternate direction implicit (AF-ADI) scheme is advanced in time by solving block tri-diagonal matrices. The algebraic Baldwin-Lomax turbulence, model is included to simulate the turbulent flow effect. Also, dual time sub-iteration with, local, time stepping is implemented to improve the convergence. The computed wall pressure field is then imposed as boundary conditions for Euler re-simulation to obtain the interference flow field. The static computation shows good agreement with experiments. The dynamic computation demonstrates reasonable physical phenomena with a good convergence history. The effects of the tunnel wall in upwash and blockage are analyzed using the computed interference flow field for several reduced frequencies and amplitudes. The corrected results by pressure signature method agree well with the results of free air conditions.

  • PDF

Unsteady Wall Interference Effect on Flows around a Circular Cylinder in Closed Test-Section Wind Tunnels (폐쇄형 풍동 시험부내의 원형 실린더 유동에 대한 비정상 벽면효과 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon;Hong, Seung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.1-8
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a circular cylinder in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The computed results showed that the unsteady pressure gradient over the cylinder is enhanced by the wall interference, and as a result the fluctuations of lift and drag are augmented. The drag is further increased because of the lower base pressure. The vortex shedding frequency is also increased by the wall interference. The pressure on the test section wall shows the harmonics having the shedding frequency contained in the wall effect.

Control of Plume Interference Using a Porous Extension (다공확장벽을 이용한 플룸간섭의 제어)

  • Young-Ki Lee;Heuy-Dong Kim
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.95-98
    • /
    • 2003
  • The physics of the plume-induced shock and separation particulary at a high plume to exit pressure ratio and supersonic speeds up to Mach 3.0 with aid without a passive control method, porous extension, were studied using computational techniques. Mass-averaged Navier-Stokes equations with the RNG k-$\varepsilon$ turbulence model were solved using a fully implicit finite volume scheme and a 4-stage Runge-Kutta method. The courol methodology for plume-afterbody interactions is to use a perforated wall attached at either the nozzle exit or the edge of the missile base. The Effect of porous wall length on plume interference is also investigated. The computational results show the main effect of the porous extension on plume-afterbody interactions is to in the plume from strongly underexpanding during a change in flight conditions. With control, a change in porous extension length has no significant effect on plume interference.

  • PDF

Numerical Investigation of the Unsteady Adaptive Wall Models in the Unsteady Wind Tunnel Testing (비정상유동 실험시의 비정상 적응벽면 모델의 수치적 연구)

  • Chang Byeong-Hee;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.219-224
    • /
    • 1995
  • The adaptive wall test section has distinct advantage over the other devices for reduction of wall interference in the wind tunnel testing. For two-dimensional steady flows the wall adaption strategy has been well established and, in some extent, has been effectively applied to three-dimensional steady flows. For unsteady testing, the wall adaptation is conceptually possible but has never been realized in the wind tunnel experiment. In this study, relatively simple adaptive wall models have been proposed and evaluated through numerical tests. The effect of Mach number, frequency, and amplitude of pitching oscillation on the wall interference reduction has been also studied.

  • PDF

A Study on Wall Interference Effect Around the Wind Turbine Airfoil (풍력터빈 에어포일 주위의 벽면효과에 관한 연구)

  • Cho, Hwan-Kee;Kang, Seung-Hee;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.485-491
    • /
    • 2012
  • The wall interference effects around the wind-turbine airfoil are experimentally investigated at low Reynolds numbers in a closed test-section wind tunnel. The test is performed at free-stream velocities from 10 to 31 m/s, which correspond to Reynolds numbers ranging from $1.5{\times}10^5$ to $4.6{\times}10^5$ based on chord of the airfoil. The blockage-area ratios, which is the ratio of the chord to the test-section width, are 27.8%, 38.5%, 41.7%, 45.5%, and 55.6%. The test results for the airfoil show that the transition point on the airfoil surface tends to move backward due to wall interference. The wall pressures for an adequate interference correction by a measured-boundary-condition method are desirable more than three times region of the chord before and after around the reference center.

Control of Plume Interference Effects on a Missile Body Using a Porous Extension (다공확장벽을 이용한 미사일 동체에 대한 플룸간섭 현상의 제어)

  • Young-Ki Lee;Heuy-Dong Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.33-38
    • /
    • 2003
  • The Physics of the Plume-induced shock and separation Particularly at a high Plume to exit pressure ratio and supersonic speeds up to Mach 3.0 with and without a passive control method, porous extension, were studied using computational techniques. Mass-averaged Navier-Stokes equations with the RNG $\kappa$-$\varepsilon$ turbulence model were solved using a fully implicit finite volume scheme and a 4-stage Runge-Kutta method. The control methodology for plume-afterbody interactions is to use a perforated wall attached at either the nozzle exit or the edge of the missile base. The Effect of porous wall length on plume interference is also investigated The computational results show the main effect of the porous extension on plume-afterbody interactions is to restrain the plume from strongly underexpanding during a change in flight conditions. With control, a change in porous extension length has no significant effect rut plume interference.

Use of CFD For Design Validation of A Transonic Civil Transport

  • Ok, Honam;Kim, Insun;Choi, Seong-Wook;Sung, Bongzoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.13-20
    • /
    • 2000
  • The applications of CFD in the design process of a transonic civil transport at Korea Aerospace Research Institute (KARI) are outlined. Three Navier-Stokes solvers, developed at KARI with different grid approaches, are used to predict the aerodynamic coefficients and solve the flowfield of various configurations. Multi-block, Chimera, and unstructured grids are the approaches implemented. The accuracy of the codes is verified for the transonic flow about RAE wing/fuselage configuration. The multi-block code is used to provide the detailed data on the flowfield around a wall interference model with different test section sizes which will be used in establishing the wall interference correction method. The subsonic and transonic flowfields about K100-04A, one of the configurations of a 100-seater transport developed by KARI and Korea Commercial Aircraft Development Consortium (KCDC), are computed to predict the aerodynamic coefficients. The results for the subsonic flow are compared with those of wind tunnel test, and the agreement is found to be excellent. The interference effect of nacelle installation on the wing of K100-04A is also investigated using the unstructured grid method, and about 10% reduction in wing lift is observed. The accuracy of the three developed codes is verified, and they are used as an efficient tool in the design process of a transonic transport.

  • PDF

Finite Element Modeling of Wall Thinning Defects: Applications to Lamb Wave Generation and Interaction

  • Jeong, Hyun-Jo;Kim, Tae-Ho;Lee, Seung-Seok;Kim, Young-Gil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.199-204
    • /
    • 2008
  • The generation of axisymmetric Lamb waves and interaction with wall thinning (corrosion) defects in hollow cylinders are simulated using the finite element method. Guided wave interaction with defects in cylinders is challenged by the multi-mode dispersion and the mode conversion. In this paper, two longitudinal, axisymmetric modes are generated using the concept of a time-delay periodic ring arrays (TDPRA), which makes use of the constructive/destructive interference concept to achieve the unidirectional emission and reception of guided waves. The axisymmetric scattering by the wall thinning extending in full circumference of a cylinder is studied with a two-dimensional FE simulation. The effect of wall thinning depth, axial extension, and the edge shape on the reflections of guided waves is discussed.

Plume Interference Effect on a Missile Body and Its Control (미사일 동체에서 발생하는 Plume 간섭 효과와 제어)

  • Lim, Chae-Min;Lee, Young-Ki;Kim, Heuy-Dong;Szwaba, Ryszard
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1730-1735
    • /
    • 2003
  • The plume-induced shock wave is a complex phenomenon, consisting of plume-induced boundary layer separation, separated shear layer, multiple shock waves, and their interactions. The knowledge base of plume interference effect on powered missiles and flight vehicles is not yet adequate to get an overall insight of the flow physics. Computational studies are performed to better understand the flow physics of the plume-induced shock and separation particularly at high plume to exit pressure ratio. Test model configurations are a simplified missile model and two rounded and porous afterbodies to simulate moderately and highly underexpanded exhaust plumes at the transonic/supersonic speeds. The result shows that the rounded afterbody and porous wall attached at the missile base can alleviate the plume-induced shock wave phenomenon, and improve the control of the missile body.

  • PDF