• Title/Summary/Keyword: Wall Impingement

Search Result 170, Processing Time 0.032 seconds

An Experimental Studies on Impingement Spray Characteristic in High Temperature and Pressure Chamber (고온고압용기에서 충돌분무 특성에 관한 실험적 연구)

  • 안병규;류호성;오은탁;송규근;정재연
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.36-43
    • /
    • 2002
  • The characteristics of spray has much effect on performance and emissions for automobile, diesel engine, gas turbine and combustion engines. So spray behavior after impinging the wall is very important for prediction the engine performance. This studies examined about impingement spray considering ambient density(18,24,30kg/ms), temperature(293,473K), impingement angle(0,30,45°). The images of impingement spray were obtained by the high speed video camera. After that we analyzed impingement spray characteristics to use this images. In this experiment, we found that 1) The spray width is reduced by increasing the ambient gas density and temperature,2) The growth of downstream is increased by increasing the impingement angle.

A Study on Characteristics of Spray and Combustion of LPG and CNG about the Effect of Impingement-wall under Direct Injection Condition (직접분사 조건에서 충돌벽면이 미치는 영향에 대한 LPG와 CNG의 분무 및 연소 특성 연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Yeom, Jeong-Kuk;Kim, Sung-Hee
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.56-68
    • /
    • 2015
  • Liquefied petroleum gas and compressed natural gas haven been regarded as promising alternative fuels because of no smoke, and they are also clean fuel for spark-ignited engine. In spark-ignited direct-injection engine, direct injection technology can increase engine volumetric efficiency significantly and also reduce necessity of throttle valve. This study designed combustion chamber equipped with visualization system. To improve ignition probability, the study designed to help three types of impingement-walls to form mixture. In doing so, LPG CNG-air mixture could be easily formed after spray-wall impingement and ignition probability increased too. The results of this study could contribute as basic resources of spark-ignited direct injection LPG and CNG engine design and optimization extensively.

Numerical study for the characteristics of diesel spray impinging on a wall (벽에 충돌하는 디젤분무의 특성에 대한 수치적 연구)

  • Yang, Hui-Cheon;Jeong, Dong-Hwa;Yu, Hong-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.661-671
    • /
    • 1998
  • It is unavoidable that the fuel spray impinges on the wall of piston cavity in a compact high-pressure D.I. diesel engine. Therefore the characteristics of impinging spray are the very significant information on the consideration and the simulation of its combustion processes including the formation mechanism of exhaust emission and the design of the combustion chamber. In this paper, the numerical simulation was performed to study the characteristics of impinging spray. The spray-wall impingement model used is Watkins and Park's model. Calculation parameters are the inclination angles and the ambient pressures. As the inclination angle increases, the impinging spray develops mainly to the direction of the downstream and scarcely flows to that of the upstream. The shape on the wall of the impinging spray is the circle in the case of the normal impingement, while it is the ellipse in that of the oblique impingement. As the ambient pressure increases, the growth of impinging spray on the wall in the radial direction decreases owing to the increase in the resistance of the ambient.

Eulerian-based Numerical Modeling for Impingement Prediction of Supercooled Large Droplets (과냉각대형액적 충돌예측을 위한 오일러리안 기반 수치 모델링)

  • Jung, Sung-Ki;Kim, Ji-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.647-654
    • /
    • 2012
  • Supercooled large droplet issues in aircraft icing have been continually reported due to the important safety considerations. In order to simulate the impingement behavior of large droplets, a two-dimensional and compressible Navier-Stokes code was developed to determine the flow field around the test model. Also, the Eulerian-based droplet impingement model including a semi-empirical approach for the droplet-wall interaction process and droplet break-up was developed. In particular, the droplet-wall interactions were considered as numerical boundary conditions for the droplet impingement simulation in the supercooled large droplet conditions. Finally, the present results were compared with the experimental test data and the LEWICE results. The droplet impingement area and maximum collection efficiency values between present results and wind tunnel data were in good agreements. Otherwise, the inclination of collection efficiency of the present result is over-predicted than the wind tunnel data around a lower surface of the NACA 23012 airfoil.

Simulation of Spray Impingement and Fuel Film Formation in a Direct Injection Diesel Engine (직접분사식 디젤엔진에서의 분무충돌과 연료액막형성 해석)

  • Kim, Man-Shik;Min, Kyoung-Doug;Kang, Bo-Seon
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.919-924
    • /
    • 2000
  • Spray impingement model and fuel film formation model were developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process were modelled by considering the change of behaviour with surface temperature condition and fuel film formation. We divided behaviour of fuel droplets after impingement into stick, rebound and splash using Weber number and parameter K. Spray impingement model accounts for mass conservation, energy conservation and heat transfer to the impinging droplets. A fuel film formation model was developed by Integrating the continuity, the Navier-Stokes and the energy equations along the direction of fuel film thickness. The validation of the model was conducted using diesel spray experimental data and gasoline spray impingement experiment. In all cases, the prediction compared reasonably well with experimental results. Spray impingement model and fuel film formation model have been applied to a direct injection diesel engine combustion chamber.

  • PDF

Effects on Diesel Spray for Variation of Ambient Pressure and Impingement Land Position (주위 압력 및 충돌면 위치 변화가 디젤분무에 미치는 영향)

  • 박대순;김문헌;박권하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.95-105
    • /
    • 1997
  • A diesel engine has become smaller and higher, thus sprays injected in high speed may be impinged on a small combustion chamber wall if there is not enough strong swirl. Those combustion chambers should have proper measures to avoid the spray impinged and deposited on a wall. One of the measures is a chamber prepared impingement parts raised on a chamber wall surface. In this system a spray is injected into the raised pip, broken into a number of smaller drops and spreaded out away from the wall surface. Therefore the fuel droplets distributes over inside of the combustion chamber. In this study, the positions, sizes and angles of the raised land are discussed to help the chamber design using spray wall impaction. The characteristics of the spray impinged on various lands are investigated and compared with each other. Then chamber shapes are discussed with the spray characteristics and the proper positions and size are proposed in some chamber volumes.

  • PDF

A Study on the Relief of Shell Wall Thinning around the Extraction Nozzle of Low Pressure Feedwater Heater (저압 급수가열기 추기노즐 주변 동체의 감육 완화에 관한 연구)

  • Seo, Hyuk-Ki;Park, Sang-Hun;Kim, Hyung-Jun;Kim, Kyung-Hoon;Hwang, Kyeong-Mo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2631-2636
    • /
    • 2008
  • The most components and piping of the secondary side of domestic nuclear power plants were manufactured carbon-steel and low-alloy steel. Flow accelerated corrosion leads to wall thinning (metal loss) of carbon steel components and piping exposed to the flowing water or wet steam of high temperature, pressure, and velocity. The feedwater heaters of many nuclear power plants have recently experienced sever wall thinning damage, which increases as operating time progress. Several nuclear power plants in Korea have also experienced wall thinning damage in the shell wall around the impingement baffle. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the experimental results based on down-scaled experimental facility. The experiments were performed based on several types of impingement baffle plates which are installed in low pressure feedwater heater.

  • PDF

Cause Analysis for the Wall Thinning and Leakage of a Small Bore Piping Downstream of an Orifice (주증기계통 오리피스 후단 소구경 배관의 감육 및 누설 발생)

  • Hwang, Kyeong Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.227-232
    • /
    • 2013
  • A number of components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the components. In April 2013, one (1) inch small bore piping branched from the main steam line experienced leakage resulting from wall thinning in a 1,000 MWe Korean PWR nuclear power plant. During the normal operation, extracted steam from the main steam line goes to condenser through the small bore piping. The leak occurred in the downstream of an orifice. A control valve with vertical flow path was placed on in front of the orifice. This paper deals with UT (Ultrasonic Test) thickness data, SEM images, and numerical simulation results in order to analyze the extent of damage and the cause of leakage in the small bore piping. As a result, it is concluded that the main cause of the small bore pipe wall thinning is liquid droplet impingement erosion. Moreover, it is observed that the leak occurred at the reattachment point of the vortex flow in the downstream side of the orifice.

RADIAL FLOW AND DROPLETS SPLASH OBSERVED ON A WALL IMPINGEMENT JET (벽면 충돌분무의 반경방향 흐름과 액적 비산에 관한 고찰)

  • KIM, Young-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • 액체 분무가 벽면의 평평한 면에 충돌할 때의 거동에 대해 실험을 통하여 조사하였다. 각 분사노즐과 벽면까지의 거리 그리고 분사 속도에 있어서 충돌점에서의 액체 액막의 비산 거동과 평면에서의 액막의 흐름에 대하여 관찰하였다. 충돌점에서 비산하는 액적의 비산율을 정량적으로 측정하였다. 분사속도가 증가에 의해 충돌 거동은 5개의 영역으로 분류되며, 분사속도가 증가하면 비산율도 증가하게 된다. 또한, 충돌거리가 분무의 분열점보다 길때의 분사량의 약 반 정도가 비산하게 되는 결과가 얻어졌다.

  • PDF

A Numerical Study of Tumble Effect on Spray/wall Impingement in the D. I. Engines (직접분사식 엔진내의 분무/벽 충돌 현상에서 텀블 효과에 관한 연구)

  • Chae, Soo;Yang, Hyup;Ryou, Su-Yeal;Ryou, Hong-Sun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.45-57
    • /
    • 2002
  • In this paper, the results gained by applying many impingement models to the cylinder and flat plate were analyzed in comparison with the experimental data to study a spray/wall interaction phenomena. To begin with, the behavior of spray injected normal to the wall was analysed using three different impingement models ; Naber and Reitz model(NR model), Watkins and Wang model(WW model) and Park and Watkins model(PW model) in the present calculation. The results obtained from these models were compared with experimental data of Katsura et. al. The results indicated that PW model was in better agreement with experimental data than the NR and WW model. Also f3r spray injected at 30DEG , the result of three models were compared with experimental data of Fujimoto et. al. The results showed that m model overpredicted the penetration in the radial direction because this model was based on the inviscid jet analogy. WW model did not predicted the radius and height of the wall spray effectively. It might be thought that this discrepancy was due to the lack of consideration of spray film velocity occurred at impingement site. The result of PW model agrees with the experimental data as time goes on. In particular, a height of the spray droplets was predicted more closely to the experimental data than the other two models. The results of PW model in which the spray droplets were distributed densely around the edge of droplet distribution shaped in a circle had an agreement with the experimental data of Fujimoto et. al. Therefore, it was concluded that PW model performed better than M and WW model for prediction of spray behavior. The numerical calculation using PW model performed to the cylinder similar to the real shape of DI engine. The results showed that vortex strength near the wall in the cylinder was stronger than that in the case of flat plate. Contrary to the flat plat, an existence of the side wall in the cylinder caused the tangential velocity component to be reduced and the normal velocity component to be increased. The flow tends to rotate to the inside of cylinder going upward to the right side wall of cylinder gradually as time passes. Also, the results showed that as the spray angle increases, the gas velocity distribution and the tumble flow seemed to be formed widely.