• 제목/요약/키워드: Wall Film Flow

검색결과 159건 처리시간 0.032초

2차원 난류 벽부착제트의 대류열전달 특성 (Convective heat transfer characteristics of a two-dimensional turbulent wall attaching offset jet)

  • 윤순현;이대희;송흥복;김대성
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3304-3312
    • /
    • 1996
  • An experimental study on the convective heat transfer characteristics was performed for a two-dimensional wall attaching offset jet(WAOJ). Thermochromic liquid crystal was used to measure the plate wall temperature. The Nusselt number was measured for Reynolds numbers from 6, 500 to 39, 000, and the offset ratios from 0.5 to 15. The maximum Nusselt number point coincides with the time-averaged reattachment point and Nusselt number decreases monotonically after the jet reattaches on the wall. In the recirculation region Nusselt number minimize near the upstream corner and then increases as X/D decreases to vanishes. This suggests the existence of secondary vortices, causing an additional mixing of the flow in the corner. The correlations between the local Nusselt number and Reynolds number, Re, offset ratio, H/D, and streamwise distance, X/D are presented.

화염안정기 형상이 램제트 연소실에서의 슬롯 막냉각 특성에 미치는 영향 (Influence of Flame Holder on Film Cooling Effectiveness of Ramjet Combustor)

  • 이건우;송지운;조형희;황기영
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.315-320
    • /
    • 2008
  • 본 연구에서는 화염 안정기 형상이 램제트 연소실에서의 단열 막냉각 효율에 미치는 영향에 대하여 실험을 수행하였다. 램제트 연소실 입구의 경사진 확장면의 끝에 화염안정기 형상을 설치하여 화염안정기에 의해 발생된 난류 유동이 다단 슬롯에 영향을 끼치도록 실험 장치를 구성하여, 화염안정기 형상을 탈부착 시키면서, 슬롯 출구 하류에서의 단열 막냉각 효율을 측정하였다. 화염 안정기를 설치하였을 경우 화염안정기에 의해 발생된 유동의 높은 전단력과 난류강도로 급격히 주유동과 혼합되어, 화염안정기가 설치되지 않은 경우에 비해 전체적으로 냉각 성능이 감소함을 결과를 통해 확인하였다.

  • PDF

Effects of Condensation Heat Transfer Model in Calculation for KNGR Containment Pressure and Temperature Response

  • Eoh, Jae-Hyuk;Park, Shane;Jeun, Gyoo-Dong;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.241-253
    • /
    • 2001
  • Under severe accidents, the pressure and temperature response has an important role for the integrity of a nuclear power plant containment. The history of the pressure and temperature is characterized by the amount and state of steam/air mixture in a containment. Recently, the heat transfer rate to the structure surface is supposed to be increased by the wavy interface formed on condensate film. However, in the calculation by using CONTAIN code, the condensation heat transfer on a containment wall is calculated by assuming the smooth interface and has a tendency to be underestimated for safety. In order to obtain the best- estimate heat transfer calculation, we investigated the condensation heat transfer model in CONTAIN 1.2 code and adopted the new forced convection correlation which is considering wavy interface. By using the film tracking model in CONTAIN 1.2 code, the condensate film is treated to consider the effect of wavy interface. And also, it was carried out to investigate the effect of the different cell modelings - 5-cell and 10-cell modeling - for KNGR(Korean Next Generation Reactor) containment phenomena during a severe accident. The effect of wavy interface on condensate film appears to cause the decrease of peak temperature and pressure response . In order to obtain more adequate results, the proper cell modeling was required to consider the proper flow of steam/air mixture.

  • PDF

강제대류계(强制對流系)에 있어서 막비등열전달(膜沸騰熱傳達)에 관한 연구(硏究) (A Study on Film Boiling Heat Transfer in a Forced Convective Flow System)

  • 김유택;권순석;정대인
    • 설비공학논문집
    • /
    • 제3권1호
    • /
    • pp.51-60
    • /
    • 1991
  • The aim of this study is to investigate the heat transfer characteristics in the transient cooling process of a high temperature wall. The slow transient cooling experiment was carried out with a copper block of high thermal capacity. The results of these experiments are as follows. 1. Temperature histories measured by the thermocouple, which is 0.99, 2.00, 2.99mm from the heat transfer surface showed monotonous during the cooling process. These variation are the curves of typical temperature histories in film-boiling, transition-boiling, and nucleate-boiling regions. 2. The temperature histories were measured by thermocouple installed in the copper block. The variations of the surface heat fluxes and surface temperature were computed from the numerical solution method TDMA from the measured temperature histories for radial position one dimensional heat transfer inverse problem. The boiling curves were found by the computed temperature histories. 3. The rewetting point which starts to change from film boiling to nucleate boiling is not connected with the mass velocity and it were found that the temperature of rewetting point indicated about $100^{\circ}C$. 4. The heat flux of rewetting point was about $10^5Kcal/m^2h$, at that time, the heat transfer coeficient indicated about $1000Kcal/m^2h^{\circ}C$ irrelevent to mass velocity. 5. The wall superheat decreases as the pressure increases. But I found that rewetting point appeared under higher condition in the wall temperature.

  • PDF

고품질 질화물 반도체 박막 성장을 위한 반응로 구조 및 열적 조건에 관한 연구 (A Study on the Reactor Configuration and Thermal Conditions for the Growth of High Quality Thin Film of GaN Layer)

  • 김진택;백병준;이철로;박복춘
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1632-1639
    • /
    • 2004
  • Numerical calculation has been performed to investigate the transport phenomena in the horizontal reactor which has two different gas inlets for MOCVD(metalorganic chemical vapor deposition). The full elliptic governing equations for continuity, momentum, energy and chemical species are solved by using the commercial code FLUENT. It is investigated how thermal characteristics, reactor geometry, and the operating parameters affect flow fields, mass fraction of each reactants. The numerical simulations demonstrate that flow rate of each species, inlet geometry of the reactor, and its distance from the susceptor as well as the inclination of upper wall of reactor can be used effectively to optimize reactor performance. The commonly used idealized boundary conditions are also investigated to predict flow phenomena in the actual deposition system.

Numerical study on the effect of viscoelasticity on pressure drop and film thickness for a droplet flow in a confined microchannel

  • Chung, Chang-Kwon;Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제21권1호
    • /
    • pp.59-69
    • /
    • 2009
  • The prediction of pressure drop for a droplet flow in a confined micro channel is presented using FE-FTM (Finite Element - Front Tracking Method). A single droplet is passing through 5:1:5 contraction - straight narrow channel - expansion flow domain. The pressure drop is investigated especially when the droplet flows in the straight narrow channel. We explore the effects of droplet size, capillary number (Ca), viscosity ratio ($\chi$) between droplet and medium, and fluid elasticity represented by the Oldroyd-B constitutive model on the excess pressure drop (${\Delta}p^+$) against single phase flow. The tightly fitted droplets in the narrow channel are mainly considered in the range of $0.001{\leq}Ca{\leq}1$ and $0.01{\leq}{\chi}{\leq}100$. In Newtonian droplet/Newtonian medium, two characteristic features are observed. First, an approximate relation ${\Delta}p^+{\sim}{\chi}$ observed for ${\chi}{\geq}1$. The excess pressure drop necessary for droplet flow is roughly proportional to $\chi$. Second, ${\Delta}p^+$ seems inversely proportional to Ca, which is represented as ${\Delta}p^+{\sim}Ca^m$ with negative m irrespective of $\chi$. In addition, we observe that the film thickness (${\delta}_f$) between droplet interface and channel wall decreases with decreasing Ca, showing ${\delta}_f{\sim}Ca^n$ Can with positive n independent of $\chi$. Consequently, the excess pressure drop (${\Delta}p^+$) is strongly dependent on the film thickness (${\delta}_f$). The droplets larger than the channel width show enhancement of ${\Delta}p^+$, whereas the smaller droplets show no significant change in ${\Delta}p^+$. Also, the droplet deformation in the narrow channel is affected by the flow history of the contraction flow at the entrance region, but rather surprisingly ${\Delta}p^+$ is not affected by this flow history. Instead, ${\Delta}p^+$ is more dependent on ${\delta}_f$ irrespective of the droplet shape. As for the effect of fluid elasticity, an increase in ${\delta}_f$ induced by the normal stress difference in viscoelastic medium results in a drastic reduction of ${\Delta}p^+$.

낮은 경사각을 갖는 밀폐형 2상 열사이폰의 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics of a Closed Two-Phase Thermosyphon with a Low Tilt Angle)

  • 김철주;강환국;김윤철
    • 설비공학논문집
    • /
    • 제8권1호
    • /
    • pp.1-12
    • /
    • 1996
  • In lots of application to heat exchanger systems, closed two-phase thermosyphons are tilted from a horizontal. If the tilt angle, especially, is less than 30$^{\circ}$, the operational performances of thermosyphon are highly dependent on tilt angle. The present study was conducted to better understand such operational behaviors as mech-anni는 of phase change, and flow patterns inside a tilted thermosyphon. For experiment, an ethanol thermosyphon with a 35% of fill charge rate was designed and manufactured, using a copper tube with a diameter 19mm and a length 1500mm. Through a series of test, the tilt angle was kept constant at each of 4 different values in the range 10~25deg. and the heat supply to the evaporator was stepwisely increased up to 30㎾/$m^2$. When a steady state was established to the thermosyphon for each step of thermal loads, the wall temperature distribution and vapor temperature at the condenser were measured. The wall temperature distributions demonstrated a formation of dry patch in the top end zone of the evaporator, with a values of temperature 20~4$0^{\circ}C$ higher than the wetted surface for a moderate heat flux q≒20㎾/$m^2$. Inspite of the presence of hot dry patch, however, the mean values of boiling heat transfer coefficient at the evaporator wall were still in a good agreement with those predicted by Rohsenow's formula, which was based on nucleate boiling. For the condenser, the wall temperatures were practically uniform, and the measured values of condensation heat transfer coefficient were 1.7 times higher than the predicted values obtained from Nusselt's film condensation theory on tilted plate. Using those two expressions, a correlation was formulated as a function of heat flux and tilt angle, to determine the total thermal resistance of a tilted thermosyphon. The correlation formula showed a good agreement with the experimental data within 20%.

  • PDF

재순환 영역이 램제트 연소실에서의 열전달 특성에 미치는 영향 (Heat Transfer Characteristics under Recirculation zone of Ramjet Combustor)

  • 이건우;오민근;함희철;황기영;조형희
    • 한국추진공학회지
    • /
    • 제11권6호
    • /
    • pp.9-17
    • /
    • 2007
  • 본 연구에서는 램제트 연소실에서의 재순환 유동이 슬롯 막냉각에 미치는 영향에 대하여 실험을 수행하였다. 램제트 연소실 입구의 경사진 확장면 돌출부에 의해 발생된 재순환 유동이 다단 슬롯 중 첫 번째 슬롯에 영향을 미치도록 실험 장치를 구성하여, 슬롯 출구 하류에서의 속도장, 온도장 및 단열 막냉각 효율을 측정하였다. 재순환 유동의 영향에 들어가는 슬롯에서 분사된 냉각유체는 재순환 유동의 높은 전단력과 난류강도로 인해 분사 직후 급격히 주유동과 혼합되어, 재순환 영역에 포함되지 않은 슬롯보다 냉각 성능이 감소함을 결과를 통해 확인하였다.

재순환 영역이 존재하는 램제트 연소실 슬롯 막냉각 연구 (Study of the Slot Film Cooling under Ramjet Combustor with Recirculation Zone)

  • 오민근;박광훈;변해원;유만선;조형희;함희철;배주찬
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.59-63
    • /
    • 2005
  • 본 연구는 재순환 유동이 램제트 연소실 슬롯 막냉각에 미치는 영향에 대하여 실험을 수행하였다. 경사진 확장면에 설치된 돌출부를 가진 냉각유로에 의해 발생된 재순환 유동이 다단 슬롯 중 첫 번째 슬롯에 영향을 미치도록 실험 장치를 구성하여, 슬롯 출구 하류에서 속도장, 온도장 및 단열 막 냉각 효율을 측정하였다 슬롯을 통해 분사된 냉각유체는 재순환 유동간의 높은 전단력과 난류강도로 인해 분사 직후 급격히 혼합되어, 냉각 성능이 감소함을 결과를 통해 확인하였다.

  • PDF

고온 강판의 분무냉각에 있어서 MHF 점에 관한 연구 (Study on Minimum Heat Flux Point in Spray Cooling of Hot Plate)

  • 김영찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.175-180
    • /
    • 2001
  • In this study, the minimum heat flux conditions are experimentally investigated for the spray cooling of hot plate. The hot plates are cooled down from the initial temperature of about $900^{\circ}C$, and the local heat flux and surface temperatures are calculated from the measured temperature-time history. The results show that the minimum heat flux point temperatures increase linearly resulting from the propagation of wetting front with the increase of the distance from the stagnation point of spray flow. However, in the wall region, the minimum heat flux point temperature becomes independent of the distance. Also, the experimental results show that the velocity of wetting front increases with the increase of the droplet flow rate.

  • PDF