• 제목/요약/키워드: Wall Film Flow

검색결과 161건 처리시간 0.027초

재순환 영역이 존재하는 램제트 연소실 슬롯 막냉각 연구 (Study of the Slot Film Cooling under Ramjet Combustor with Recirculation Zone)

  • 오민근;박광훈;변해원;유만선;조형희;함희철;배주찬
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.59-63
    • /
    • 2005
  • 본 연구는 재순환 유동이 램제트 연소실 슬롯 막냉각에 미치는 영향에 대하여 실험을 수행하였다. 경사진 확장면에 설치된 돌출부를 가진 냉각유로에 의해 발생된 재순환 유동이 다단 슬롯 중 첫 번째 슬롯에 영향을 미치도록 실험 장치를 구성하여, 슬롯 출구 하류에서 속도장, 온도장 및 단열 막 냉각 효율을 측정하였다 슬롯을 통해 분사된 냉각유체는 재순환 유동간의 높은 전단력과 난류강도로 인해 분사 직후 급격히 혼합되어, 냉각 성능이 감소함을 결과를 통해 확인하였다.

  • PDF

고온 강판의 분무냉각에 있어서 MHF 점에 관한 연구 (Study on Minimum Heat Flux Point in Spray Cooling of Hot Plate)

  • 김영찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.175-180
    • /
    • 2001
  • In this study, the minimum heat flux conditions are experimentally investigated for the spray cooling of hot plate. The hot plates are cooled down from the initial temperature of about $900^{\circ}C$, and the local heat flux and surface temperatures are calculated from the measured temperature-time history. The results show that the minimum heat flux point temperatures increase linearly resulting from the propagation of wetting front with the increase of the distance from the stagnation point of spray flow. However, in the wall region, the minimum heat flux point temperature becomes independent of the distance. Also, the experimental results show that the velocity of wetting front increases with the increase of the droplet flow rate.

  • PDF

고온 평판의 분무냉각에 있어서 MHF점에 관한 연구 (Study on Minimum Heat Flux Point in Spray Cooling of Hot Plate)

  • 김영찬
    • 설비공학논문집
    • /
    • 제13권10호
    • /
    • pp.974-981
    • /
    • 2001
  • In this study, the minimum heat flux conditions are experimentally investigated for the spray cooling of hot plate. The hot plates are cooled down from the initial temperature of about$ 900^{\circ}C$, and the local heat flux and surface temperatures are calculated from the measured temperature-time history. The results show that the minimum heat flux point temperatures increase linearly resulting from the propagation of wetting front with the increase of the distance from the stagnation point of spray flow. However, in the wall region, the minimum heat flux point temperature becomes independent of the distance. Also, the velocity of wetting front increases with the increase of the droplet flow rate.

  • PDF

단이 진 경사벽면에 부착되는 2차원 평면제트의 열전달 효과에 관한 연구 (An investigation on heat transfer effects of two dimensional plane jet attaching offseted obliqued wall)

  • 윤순현;이대희;심재경;송흥복
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1314-1325
    • /
    • 1997
  • Experiments have been conducted to determine the flow and heat transfer characteristics for a two-dimensional turbulent wall attaching offset jet at different oblique angles to a flat surface. The distributions of the wall static pressure coefficient and time-averaged reattachment position for various offset ratios and oblique angles have been measured. The local Nusselt number distributions on the plate surface were also measured using liquid crystal as a temperature indicator. The new hue-capturing technique utilizing a true color image processing system was used to accurately determine the temperature of the liquid crystal. The experiments were carried out at Reynolds number, Re (based on D) of from 7300 to 21,300 with offset ratio, H/D from 2.5 to 10, and oblique angle, .alpha. from 0 deg. to 400 deg..

지역난방 배열 회수 보일러의 유동 가속 부식 원인 고찰 (Flow-Accelerated Corrosion Analysis for Heat Recovery Steam Generator in District Heating System)

  • 홍민기;채호병;김영수;송민지;조정민;김우철;하태백;이수열
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.11-15
    • /
    • 2019
  • Severe wall thinning is found on the tube of a low-pressure evaporator(LPEVA) module that is used for a heat recovery steam generator(HRSG) of a district heating system. Since wall thinning can lead to sudden failure or accidents that lead to shutdown of the operation, it is very important to investigate the main mechanism of the wall thinning. In this study, corrosion analysis associated with a typical flow-accelerated corrosion(FAC) is performed using the corroded tube connected to an upper header of the LPEVA. To investigate factors triggering the FAC, the morphology, composition, and phase of the corroded product of the tube are examined using optical microscopy, scanning electron microscopy combined with energy dispersive spectroscopy, and x-ray diffraction. The results show that the thinnest part of the tube is in the region where gas directly contacts, revealing the typical orange peel type of morphology frequently found in the FAC. The discovery of oxide scales containing phosphate indicates that phosphate corrosion is the main mechanism that weakens the stability of the protective magnetite film and the FAC accelerates the corrosion by generating the orange peel type of morphology.

수평원관군상(水平圓管群上)의 이원흡수용액유동(二元吸收溶液流動)에 의(依)한 전달흡수특성(傳達吸收特性) (Absorption of Water Vapor into an Absorbing Binary Liquid Film Falling over a Horizontal Tube Bank)

  • 김석현;김영인;서석청;황동곤
    • 대한설비공학회지:설비저널
    • /
    • 제17권5호
    • /
    • pp.583-589
    • /
    • 1988
  • Condensation of water vapor into an absorbent liquid of LiBr-water solution falling over a bank of water cooled horizontal tubes was investigated theoretically. The governing conservation equation for a re-defined physical transport phenomena were solved numerically using a finite difference method. Raw parameters were used in this study, since reliable experimental data is required prior to a dimensionless parametric study. The average values of wall heat transfer coefficient and interfacial absorption rate were defined to see the system performance. Other parameters include tube diameter, streamwise coordinate (and number of tubes in row), mass flow rate, and the wall temperature. The effects of these quantities on the absorption processes and suggestions for a rational system design have been presented.

  • PDF

필름 냉각을 위한 리브드 채널의 홀 위치에 따른 열전달 특성 수치 해석 (Numerical Analysis of Heat Transfer Characteristics of Ribbed Channels with Different Film Cooling Hole Position)

  • 박지민;문주현;이형주;이성혁
    • 한국산학기술학회논문지
    • /
    • 제19권9호
    • /
    • pp.69-76
    • /
    • 2018
  • 본 연구에서는 가스터빈 블레이드의 필름 냉각에서 45도 리브가 있는 냉각채널의 필름 홀 위치가 블레이드의 표면냉각 성능에 미치는 영향을 전산유체해석 기법을 통하여 분석하였다. 또한 냉각채널의 리브 유무의 영향을 동일 분사율에 대해서 고찰하였다. 수치해석 도메인은 3차원으로 구성하였고 상용코드(Fluent ver. 17.0)를 사용하여 정상상태 조건 하에서 수치해석을 진행하였다. 그 결과를 바탕으로 블레이드 표면에서의 냉각효율, 유속, 유선, 압력 계수를 비교 분석하였고 홀 위치의 변화가 리브 구조에 의해 유발되는 이차 유동의 토출에 미치는 영향을 고찰하였다. 수치해석 결과로부터 리브가 설치되어 있는 경우 냉각채널의 내부유동은 상부에서 반시계 방향 및 하부에서 시계 방향의 와류쌍을 형성하는 것을 확인할 수 있었다. 리브가 있는 채널의 경우 리브에 의하여 발생한 와류유동이 홀 출구 부근에서 더 높은 압력 차이를 유발하여 리브가 없는 경우보다 최소 12% 이상의 높은 냉각 효율을 나타냈다. 또한 리브가 있는 채널 중에서 홀이 좌측에 위치한 경우(Rib-Left) 리브에 의하여 발생한 이차 유동이 홀 부근의 벽면에 부딪혀 홀 경사각 방향으로의 유동이 형성되는 것을 확인하였다. 블레이드 표면으로 토출된 냉각기체가 주 유동 경계층 내부에서 머무는 영역이 다른 케이스에 비하여 넓기 때문인 것으로 사료된다. 또한 이 경우 홀 출구 부근에서 가장 큰 압력 계수 차이를 나타내었고 이로 인하여 냉각기체의 토출이 촉진되어 냉각효율이 다소 증가하였다.

증착변수들이 SnO2 화학증착에 미치는 영향에 관한 연구 (The Effects of Deposition Variables on the Chemical Vapor Deposition of SnO2)

  • 김광호;천성순
    • 한국세라믹학회지
    • /
    • 제24권6호
    • /
    • pp.543-552
    • /
    • 1987
  • The effects of deposition variables on SnO2 CVD were investigated for SnCl4+O2 reaction at 300∼700$^{\circ}C$, Psncl4=1${\times}$10-5∼1${\times}$10-3 atm, and Po2=5${\times}$10-4∼1 atm. A thermodynamic equilibrium study on Sn-Cl-O system has been performed with the computer calculation. The calculation indicates that major species participating the reaction in SnCl4 and not intermediate species, SnCl2. Good uniformity of the film thickness was obtained at the flow rate of 11cm/sec, which resulted from the stable gas flow in our cold wall reactor. The experimental results showed that apparent activation energy of the deposition was about 13.5Kcal/mole below the temperature of 500$^{\circ}C$ and the deposition mechanism was controlled by surface reation. The behavior of deposition rate on the reactant partial pressures could be explained with the Langmuri-Hinshelwood mechanism. X-ray study demonstrated that SnO2 film deposited at temperatures above 400$^{\circ}C$ were polycrystalline with tetragonal rutile structure and grew with (211) and (301) preferred orientations.

  • PDF

MOCVD 법에 의해 제조된 $CeO_2$ 버퍼층 증착 거동의 기판 의존성 (Substrate dependence of the deposition behavior of $CeO_2$ buffer layer prepared by MOCVD method)

  • 전병혁;최준규;정우영;이희균;홍계원;김찬중
    • Progress in Superconductivity
    • /
    • 제7권2호
    • /
    • pp.130-134
    • /
    • 2006
  • Buffer layers such as $CeO_2\;and\;Yb_2O_3$ films for YBCO coated conductors were deposited on (100) $SrTiO_3$ single crystals and (100) textured Ni substrates by a metal organic chemical vapor deposition (MOCVD) system of the hot-wall type. The substrates were moved with the velocity of 40 cm/hr. Source flow rate, $Ar/O_2$ flow rate and deposition temperature were main processing variables. The degree of film epitaxy and surface morphology were investigated using XRD and SEM, respectively. On a STO substrate, the $CeO_2$ film was well grown epitaxially above the deposition temperature of $450^{\circ}C$. However, on a Ni substrate, the XRD showed NiO (111) and (200) peaks due to Ni oxidation as well as (111) and (200) film growth. For the films deposited with $O_2$ gas as oxygen source, it was found that the NiO film was formed at the interface between the buffer layer and the Ni substrate. The NiO layer interrupts the epitaxial growth of the buffer layer. It seems that the epitaxial growth of the buffer layer on Ni metal substrates using $O_2$ gas is difficult. We are considering a new method avoiding Ni oxidation with $H_2O$ vapor instead of $O_2$ gas.

  • PDF

압전세라믹 냉각홴에 의한 강제 공랭 모듈 주위의 열전달특성 (Heat Transfer Characteristics Around a Surface-Mounted Module Cooled by Piezoelectric Fan)

  • 박상희;박규진;최성대
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.780-788
    • /
    • 2004
  • This paper reports the fluid flow and heat transfer around a module cooled by forced air flow generated by a piezoelectric(PZT) cooling fan. The fluids are locally accelerated by a flexible PZT fan which deflects inside a fluid transport system of comparatively simple structure mounted on a PCB in a parallel-plate channel(450${\times}$80${\times}$700㎣). Input voltages of 20-100V and a resonance frequency of 23㎐ were used to vibrate the cooling fan. Input power to the module was 4W. The fluid flow around the module was visualized by using PIV system. The temperature distributions around a heated module were visualized by using liquid crystal film(LCF). The cooling effect using a PZT fan was independent of the vent area ratios at the channel inlet and was similar to the forced convection cooling. We found that the flow type was Y-shape and the cooling effect was increased by the wake generated by a piezoelectric cooling fan.