• Title/Summary/Keyword: Walking speed experiment

Search Result 69, Processing Time 0.021 seconds

The Effect of Ankle Balance Taping on Gait and Balance in Stroke Patients

  • Kyoung-Won Kim;Ki Bum Jung;Dong-Ho Kim;Yongwoo Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.2
    • /
    • pp.123-129
    • /
    • 2023
  • Objective: Kinesio tape has been applied to the ankle to improve balance and gait. Stroke patients show abnormal gait patterns due to foot drop. This study aimed to determine the effects of ankle balance taping which to support the ankle joint on balance and gait in patients with chronic stroke. Design: A randomized controlled trial. Methods: Twenty-four chronic stroke patients were selected and randomized into experimental group (n=12) and control group (n=12). The experimental group applied kinesio taping three times a week for three weeks, and the control group applied placebo taping for the same amount of time. To evaluate the effectiveness of the treatment, the subjects' walking ability, static balance, and dynamic balance were assessed before and after the experiment. Gait speed and spatiotemporal gait ability were measured to examine walking ability, postural sway velocity and velocity moment for static balance, and Timed-Up and Go test and Berg Balance Scale were conducted to check dynamic balance. Results: The experimental group showed a significant increase in walking ability, static balance, and dynamic balance in the within-group pre-post difference (p<0.05). In the between-group comparison, the experimental group had a significant difference in walking ability than the control group (p<0.05). Conclusions: Ankle balance taping can help improve gait, and this study can be used as a basis for future studies of ankle balance taping.

An Experimental Study on the Analysis of Evacuation Characteristics Considering the Joining of Occupants in a Building Staircase (건축물 계단실 내 재실자의 합류를 고려한 피난특성 분석에 관한 실험적 연구)

  • Kim, Yun-Seong;Huh, Ye-Rim;Choi, Yun-Ju;Kim, Hye-Won;Kwon, Yeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.204-205
    • /
    • 2021
  • In the event of a fire in a high-rise building, rapid evacuation through the stairwell is a very important factor in rapid evacuation. However, in the event of an actual fire, most of the occupants evacuate at the same time, resulting in a stay in the stairwell, reducing the evacuation speed. In Korea, conditions for buildings are created to evacuate quickly and safely while introducing performance-oriented designs to solve these problems, but there is no research data related to the evacuation speed due to joining in the event of vertical evacuation. Therefore, in this study, by analyzing the experiment conducted at W University in Japan, the density-speed relationship when staying in the staircase room was derived, and the regression equation was derived based on the results.

  • PDF

The Effects of Hiking Poles and Steady Walking Time on Up-hill Walking (폴 사용 여부와 걷는 지속시간 경과가 오르막 걷기에 미치는 영향)

  • Seo, Jung-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.227-235
    • /
    • 2009
  • The purpose of this study was to analyze differences of 45minutes up-hill walking depending on hiking poles and steady walking time. Seven healthy men volunteered for this experiment. Each of them performed up-hill walking with hiking poles and without hiking poles at speed of 3.5km/h during 45minutes on a treadmill. The treadmill was set 25% up-hill inclination. The lower extremity 4 muscles activity including rectus femoris, tibialis anterior, gastrocnemius, biceps femoris was recorded and assessed by using EMG. And Heart rate(HR) and Rating of perceived exertion(RPE) were recorded and analyzed by 15minutes interval. The statistical analysis was two-way ANOVA with repeated measures to compare effects of hiking poles and steady walking time. The level of statistical significance for all tests was P<.05. The results of this study were following : Integrated EMG about four individual muscles doesn't have statistical significancy. However, the sum of IEMG of the four muscles was decreased some with poles than without poles(p<.0l) and IEMG about four muscles was rut different on steady walking time. Second, HR was increased significantly as time up(P<.01). RPE was decreased some with poles than without poles(P<.05) and RPE was increased significantly as time up(P<.01).

The Effects of Hiking Poles-using on Gait and Muscle Activity (등산폴 사용이 보행과 근활동에 미치는 영향)

  • Seo, Jung-Suk;Kim, Yong-Woon;Yoon, Te-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.209-215
    • /
    • 2007
  • The purpose of this study was to investigate gait factor and muscle activity depending on hiking poles-using. Eight healthy men volunteered for this experiment. Each of them performed down-hill walking with hiking poles-using and without poles at speed of 3.5km/h for 45 minutes on a treadmill. The treadmill was set 25% down-hill inclination. Kinematic data collected in 60Hz were recorded and analyzed by using 2D motion capture system to measure step time and step length so on. And the lower extremity muscle activities were simultaneously recorded in 1500Hz and assessed by using EMG. The statistical analysis was the paired t-test with repeated measures to compare between hiking poles-using and without poles. The level of statistical significance for all tests was .05. The results of this study were following : Step time was showed statistically different according to pole conditions. That is, the case of poles-using was longer than without poles in step time. Also, step length was showed statistically different between two conditions. Step length about trials with poles was longer than trials without poles. In the muscle activity, the case of all muscles was not showed statistical significance about pole conditions. However, in most muscles IEMG, there were some decreasing-trend relatively when hiking polesusing.

The Influence of Auditory-Feedback Device Using Wearable Air-Pressure Insole on Spatiotemporal Gait Symmetry in Chronic Hemplegia

  • Heo, Ji-Hun;Song, Changho;Jung, Sangwoo
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.311-319
    • /
    • 2021
  • Objective: To investigate the effect of emphasized initial contact by using a wearable air-pressure insole to provide auditory-feedback with variations of maximum peak pressure (MPP) of the affected side on spatiotemporal gait parameters and gait symmetry of stroke patients Design: A cross-sectional study Methods: Eighteen stroke patients participated in this study. All subjects walked five trials using an air-pressure insole that provides auditory feedback with different thresholds set on the insole. First, subjects walked without any auditory feedback. Then, the MPP threshold on the affected side was set from 70% and increase threshold by 10% after each trial until 100%. They walked three times or more on the gait analyzer for each trial, and the average values were measured. Before starting the experiment, subjects measured body weight, initial gait abilities and affected side MPP without auditory feedback. Results: Temporal and spatial variables were significantly increased in trials with auditory feedback from air-pressure insole except for non-paralyzed single support time and spatial gait symmetry compared to trials without auditory feedback(p<0.05). Among the four different thresholds, the walking speed, unaffected side single support time, affected and unaffected side stride, and affected side step length were greatest at 80% threshold of maximum peak, while affected single support time, temporal gait symmetry, and unaffected step length were greatest at the maximum peak of 100% threshold. Conclusions: These results indicate that auditory feedback gait using air-pressure insoles can be an effective way to improve walking speed, single support time, step length, stride, and temporal gait symmetry in stroke patients.

Effect of 2 Weeks Backward Walking Exercise on Cervical Angle and Gait Parameters in College Students with Forward Head Posture (2주간 뒤로 걷기 운동이 앞쪽 머리 자세 대학생들의 목뼈 각도와 걸음 변수에 미치는 영향)

  • Park, Han-Kyu;Park, Jin
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.3
    • /
    • pp.135-144
    • /
    • 2021
  • Purpose : The purpose of this study was to investigate the effect of 2 weeks of backward walking exercise (BWE) on cervical angle and gait parameters in college students with forward head posture. Methods : Fifteen subjects participated in the experiment. All the participants had a craniovertebral angle (CVA) of 55 degrees or less. The purpose of the study was explained to all the subjects prior to participation, and volunteered to take part in the study. A camera capable of taking pictures of the lateral plane was installed at a distance of 1.5 meters from each subject. Images of forward head posture were obtained before and after performing the BWE, and the CVA and craniorotational angle (CRA) were compared pre- versus post exercise. Foot pressure and gait parameters (step length of left and right, stride length, stance of left and right, swing of left and right, step time of left and right, and stride time) were measured using a rehabilitation treadmill. The subjects performed the BWE for 2 weeks. The exercise program consisted of a 5-minute warm-up exercise, 20-minute main exercise, and 5-minute cool-down exercise. In the main exercise, the treadmill speed was set to 2.4 km/h in the first week and 3.4 km/h in the second week. A paired t test was used to compare the CVA and CRA and gait parameters before and after the exercise. Results : Comparison of the CVA and CRA before and after the BWE revealed a significant difference post exercise, with a marked improvement in forward head posture after the exercise (p<.05). Conclusion : Based on the results of this study, the BWE is considered to be an effective exercise for the forward head posture. Also, additional research is needed to shed light on the impact of the BWE on gait parameters.

The Effects of Sling Exercise Based with Bobath Concept on the Balance of Spastic Diplegia Cerebral Palsy: Case Report (보바스 개념에 기초한 슬링 운동이 양하지 뇌성마비 균형에 미치는 영향: 단일사례연구)

  • Lee, Eun-Ju
    • The Journal of Korean Society for Neurotherapy
    • /
    • v.22 no.3
    • /
    • pp.11-18
    • /
    • 2018
  • Purpose This study is to investigate the effect of sling exercise on the balance capacity of spastic diplegia cerebral palsy patient based on Bobath concept. Methods A single subject experiment was designed targeting an 8year old child with the rigid bilateral cerebral palsy. The static balance test used the 30 second Rombug test of BT4, and the dynamic balance test used the timed up and go test. Results In the 30second Rombug test of BT4, the child had a smaller median outcome than baseline and withdrawal period. In the TUG test, the walking speed in the intervention period was improved comparing to the baseline and withdrawal period. Conclusion The sling exercise based on the Bobath concept has been proved that it is an effective intervention to improve the static and dynamic balance capacity of patients with rigid bilateral cerebral palsy.

Energy Efficient Control of Onboard Hydraulic Power Unit for Hydraulic Bipedal Robots (유압 구동식 이족 로봇의 구동을 위한 탑재식 유압 파워 유닛의 에너지 효율적 제어)

  • Cho, Buyoun;Kim, Sung-Woo;Shin, Seunghoon;Kim, Min-Su;Oh, Jun-Ho;Park, Hae-Won
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.86-93
    • /
    • 2021
  • This paper proposes a controller to regulate the supply pressure of the hydraulic power unit (HPU) for driving a bipedal robot. We establish flow rate models for charging accumulator, actuating joints and leaking from actuators and spool valves. This determines the pump driving motor speed to satisfy the demanded flow rate for operating the bipedal robot without the energy loss caused by the bypass through a pressure regulating valve. We apply proposed controller to an onboard HPU mounted on top of bipedal robot platform with twelve degrees of freedom. We implement air-walking motion and squat motion which require variable flow rate to the bipedal robot. Through this experiment, the energy efficiency of proposed controller was verified by comparing the electric energy consumed when the controller was applied and when the pump operated at constant speed. We also shows the capability of the HPU's control performance to regulate supply pressure.

Association between Hand Grip Strength and Gait Variability in Elderly: Pilot Study (노인의 악력과 보행 가변성 간의 연관성: 예비연구)

  • Lee, Do-Youn;Lee, Yungon;Shin, Sunghoon
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.125-134
    • /
    • 2022
  • Purpose: The aim of this study was to establish an association between grip strength and gait variability in the elderly. Methods: The participants in this experiment (n = 20) were aged 65 or older. Power grip and lateral pinch forces were obtained in grip strength tests, and spatiotemporal gait parameters were collected from IMU sensors during 6 min actual walking to test the gait of participants. The collected gait parameters were converted to coefficient of variation (CV) values. To confirm the association between grip strength and gait variability, a partial correlation analysis was conducted in which height, weight, and gait speed were input as controlling variables. Results: Grip power showed a significant negative correlation with the stride length CV (r = -0.52), and the lateral pinch force showed a significant negative correlation with the stance CV (r = -0.65) and swing CV (r = -0.63). Conclusion: This study reveals that gait variability decreases as grip strength increases, although height, weight, and gait speed were controlled. Thus, grip strength testing, a simple aging evaluation method, can help identify unstable gait in older adults at risk of falling, and grip strength can be utilized as a non-invasive measurement method for frailty management and prevention.

Effects of Treadmill Training on Hyperextension of the Knee and Cadence in Patients With Hemiplegia (트레드밀 훈련이 편마비 환자의 무릎관절 과신전과 분속수에 미치는 영향)

  • Park, Chul-Hong;Chung, Bo-In
    • Physical Therapy Korea
    • /
    • v.8 no.1
    • /
    • pp.89-96
    • /
    • 2001
  • This study addresses the effects of treadmill training on hyperextended knee and cadence in patients with hemiplegia. A single subject research design with multiple baselines across individuals was used for the study. Two patients with hemiplegia participated in the experiment. The experiment consisted of interventions where the patients were asked to ambulate for 15 minutes at a comfortable walking speed on the treadmill with 11% slope grade and were allowed to rest for 10 minutes. Patients, then, were asked to ambulated 20 meters at walkway. The number of occurrences of knee hyperextension and the total number of steps were recorded. The results showed that the occurrence of knee hyperextension decreased by approximately 30% after the first session of the treadmill training and continued to gradually decrease during the following sets of treadmill training. Meanwhile, there was a slight increase in the cadence to a negligible extent. These results suggest that the gait training on the sloped treadmill may be helpful for correcting the knee hyperextension in patients with hemiplegia.

  • PDF