• Title/Summary/Keyword: Walking navigation

Search Result 78, Processing Time 0.024 seconds

A Strategy of Pedestrian Environment Improvement through the Analysis on the Walking Transportation Characteristics in a Big City (보행통행 특성분석에 의한 보행환경개선 추진전략 연구)

  • 김형보;윤항묵
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.269-278
    • /
    • 2000
  • Today the pedestrian-related problems a key subject requiring the attention of the traffic engineers for improving the transportation system. Particularly in urban and CBD locations, the pedestrian presents an element of sharp conflict with vehicular traffic. Therefore pedestrian movements must be studied for the purpose of providing guideline for the design and operation of walking transportation systems. This paper is to address the characteristics of walking transportation in a big city. Especially the focuses are emphasized on the ratio occupied by pedestrian traffic among the whole unlinked trips in a city and walking time. The data for analysis are collected in Seoul metropolitan city through sampling 1,006 citizens. Compared with other similar research works this paper utilized diversified tools to acquire more useful results. Finally, policy directions for pedestrian environment improvement were suggested.

  • PDF

Real-time Humanoid Robot Trajectory Estimation and Navigation with Stereo Vision (스테레오 비전을 이용한 실시간 인간형 로봇 궤적 추출 및 네비게이션)

  • Park, Ji-Hwan;Jo, Sung-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.8
    • /
    • pp.641-646
    • /
    • 2010
  • This paper presents algorithms for real-time navigation of a humanoid robot with a stereo vision but no other sensors. Using the algorithms, a robot can recognize its 3D environment by retrieving SIFT features from images, estimate its position through the Kalman filter, and plan its path to reach a destination avoiding obstacles. Our approach focuses on estimating the robot’s central walking path trajectory rather than its actual walking motion by using an approximate model. This strategy makes it possible to apply mobile robot localization approaches to humanoid robot localization. Simple collision free path planning and motion control enable the autonomous robot navigation. Experimental results demonstrate the feasibility of our approach.

The Design and Implementation Android OS Based Portable Navigation System For Visually Impaired Person and N : N Service (시각 장애인을 위한 Android OS 기반의 Portable Navigation System 설계 및 구현 과 N : N Service)

  • Kong, Sung-Hun;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.327-330
    • /
    • 2012
  • In the rapid growth of cities, road has heavy traffic and many buildings are under constructions. These kinds of environments make more difficulty for a person who is visually handicapped to walk comfortable. To alleviate the problem, we introduce Android based Portable Navigation System to help walking for Visually Impaired Person. It follows, service center give instant real time monitoring to visually impaired person for their convenient by this system. Android based Portable Navigation System has GPS, Camera, Audio and WI-FI(wireless fidelity) available. It means that GPS location and Camera image information can be sent to service center by WI-FI network. To be specific, transmitted GPS location information enables service center to figure out the visually impaired person's whereabouts and mark the location on the map. By delivered Camera image information, service center monitors the visually impaired person's view. Also, they can offer live guidance to visually impaired person by equipped Audio with live talking. To sum up, Android based Portable Navigation System is a specialized navigation system that gives practical effect to realize more comfortable walking for visually impaired person.

  • PDF

The Design and Implementation Navigation System For Visually Impaired Person (시각 장애인을 위한 Navigation System의 설계 및 구현)

  • Kong, Sung-Hun;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2702-2707
    • /
    • 2012
  • In the rapid growth of cities, road has heavy traffic and many buildings are under constructions. These kinds of environments make more difficulty for a person who is visually handicapped to walk comfortable. To alleviate the problem, we introduce Navigation System to help walking for Visually Impaired Person. It follows, service center give instant real time monitoring to visually impaired person for their convenient by this system. This Navigation System has GPS, Camera, Audio and Wi-Fi(wireless fidelity) available. It means that GPS location and Camera image information can be sent to service center by Wi-Fi network. To be specific, transmitted GPS location information enables service center to figure out the visually impaired person's whereabouts and mark the location on the map. By delivered Camera image information, service center monitors the visually impaired person's view. Also, they can offer live guidance to visually impaired person by equipped Audio with live talking. To sum up, Android based Portable Navigation System is a specialized navigation system that gives practical effect to realize more comfortable walking for visually impaired person.

Obstacle Avoidance Algorithm of Hybrid Wheeled and Legged Mobile Robot Based on Low-Power Walking (복합 바퀴-다리 이동형 로봇의 저전력 보행 기반 장애물 회피 알고리즘)

  • Jeong, Dong-Hyuk;Lee, Bo-Hoon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.448-453
    • /
    • 2012
  • There are many researches to develop robots that improve its mobility to adapt in various uneven environments. In the paper, a hybrid wheeled and legged mobile robot is designed and a obstacle avoidance algorithm is proposed based on low power walking using LRF(Laser Range Finder). In order to stabilize the robot's motion and reduce energy consumption, we implement a low-power walking algorithm through comparison of the current value of each motors and correction of posture balance. A low-power obstacle avoidance algorithm is proposed by using LRF sensor. We improve walking stability by distributing power consumption and reduce energy consumption by selecting a shortest navigation path of the robot. The proposed methods are verified through walking and navigation experiments with the developed hybrid robot.

Navigation Trajectory Control of Security Robots to Restrict Access to Potential Falling Accident Areas for the Elderly (노약자의 낙상가능지역 진입방지를 위한 보안로봇의 주행경로제어)

  • Jin, Taeseok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.497-502
    • /
    • 2015
  • One of the goals in the field of mobile robotics is the development of personal service robots for the elderly which behave in populated environments. In this paper, we describe a security robot system and ongoing research results that minimize the risk of the elderly and the infirm to access an area to enter restricted areas with high potential for falls, such as stairs, steps, and wet floors. The proposed robot system surveys a potential falling area with an equipped laser scanner sensor. When it detects walking in elderly or infirm patients who in restricted areas, the robot calculates the velocity vector, plans its own path to forestall the patient in order to prevent them from heading to the restricted area and starts to move along the estimated trajectory. The walking human is assumed to be a point-object and projected onto a scanning plane to form a geometrical constraint equation that provides position data of the human based on the kinematics of the mobile robot. While moving, the robot continues these processes in order to adapt to the changing situation. After arriving at an opposite position to the human's walking direction, the robot advises them to change course. The simulation and experimental results of estimating and tracking of the human in the wrong direction with the mobile robot are presented.

Dynamic Gait embody using angular acceleration for a Walking Robot (각가속도를 이용한 이족 로봇의 동적 걸음새 구현)

  • Park, Jae-Mun;Park, Seung-Yub;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.209-216
    • /
    • 2007
  • In this paper, we embodied posture-stabilization and dynamic gait in a walking robot. 10 RC servo motors are used to operate joints. And the joints have enough moving ranges suitable in any walking pattern. Each joint trajectory is generated by cubic spline interpolation method and the stability of the trajectory is verified by using Zero Moment Point from the robot modeling. To avoid complex structure and expression, Zero Moment Point of the biped robot used angular acceleration is suggested. To measure the stability of the biped robot, Tilt sensor and gyro sensor are used. Finally, Personal Computer is used computer monitoring and data processing. Most of computation, such as 10 RC servo motor control, joint trajectory generating, ZMP compensation, sense measuring, etc, was used Digital Signal Processor.

  • PDF

Approach toward footstep planning considering the walking period: Optimization-based fast footstep planning for humanoid robots

  • Lee, Woong-Ki;Kim, In-Seok;Hong, Young-Dae
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.471-482
    • /
    • 2018
  • This paper proposes the necessity of a walking period in footstep planning and details situations in which it should be considered. An optimization-based fast footstep planner that takes the walking period into consideration is also presented. This footstep planner comprises three stages. A binary search is first used to determine the walking period. The front stride, side stride, and walking direction are then determined using the modified rapidly-exploring random tree algorithm. Finally, particle swarm optimization (PSO) is performed to ensure feasibility without departing significantly from the results determined in the two stages. The parameters determined in the previous two stages are optimized together through the PSO. Fast footstep planning is essential for coping with dynamic obstacle environments; however, optimization techniques may require a large computation time. The two stages play an important role in limiting the search space in the PSO. This framework enables fast footstep planning without compromising on the benefits of a continuous optimization approach.

Development of an Effective Walking System for a Hexapod Robot on Uneven Terrain (오프로드 환경에서 효율적인 6족 로봇 보행 시스템 개발)

  • Kim, Jun Woo;Lee, Gi Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1152-1159
    • /
    • 2013
  • This paper proposes an effective walking system for a hexapod robot on uneven terrain. To overcome the deficiencies of two-pair walking systems, which are effective on even terrain, the use of only three legs changes the steps required for movement. The proposed system receives feedback data from switches attached to the bottom of the legs and gyro sensor to carry out stable walking using the Bezier curve algorithm. From the coordinates of the Bezier curve, which guarantees the circular motion of legs, the motor's angle value can be obtained using inverse kinematics. The angle values are sent to each motor though RS-485 communication. If a switch is pushed by the surface during navigation in the Bezier curve pattern, the robot is designed to change its circular course. Through the changed course, each leg can be located on an optimal surface and the wobble phenomenon is reduced by using a normal vector algorithm. The simulation and experiment results show the efficiency of the proposed algorithm.

Pedestrian Network Models for Mobile Smart Tour Guide Services

  • Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • The global positioning system (GPS)-enabled mobile phones provide location-based applications such as car and pedestrian navigation services. The pedestrian navigation services provide safe and comfortable route and path guidance for pedestrians and handicapped or elderly people. One of the essential components for a navigation system is a spatial database used to perform navigation and routing functions. In this paper, we develop modeling and categorization of pedestrian path components for smart tour guide services using the mobile pedestrian navigation application. We create pedestrian networks using 2D base map and sky view map in urban area. We also construct pedestrian networks and attributes of node, link, and POI using on-site GPS data and photos for smart pedestrian tour guide in the major walking tourist spots in Jeju.