• Title/Summary/Keyword: Walking direction

Search Result 208, Processing Time 0.023 seconds

Survey and Analysis of Pedestrians' Preferences on Walking Directions (보행자의 선호 보행방향에 관한 조사 및 분석)

  • Jung, In-Ju;Jung, Hwa-S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.75-83
    • /
    • 2007
  • Why do some countries walk on the right and others on the left? People have a dominant hand which leads to a natural tendency to favor one side of the road or another depending on the means of transportation being used. The primary objective of this study was to investigate the stereotype of Korean regarding preferred walking direction in encountering various facilities and provide the appropriate information to traffic policy makers. Six hundred Korean male and female subjects aging from 12 to 83 were selected to investigate the various statistics about their preferred walking direction and their employment characteristics on walking diverse facilities. The walking directions of eleven different facilities were asked along with other relative subjects' characteristics(e.g., age, gender, hand and foot dominance) to determine the relationship among these obtained data. The descriptive statistics showed that 73.7% and 26.3% were preferred walking right and left direction respectively. Moreover, various statistical analysis revealed that general tendency of walking direction was varied by hand and foot dominances. There were strong tendency that right-handed people prefer walking right side of the road and vise versa, hence this should be considered in setting up traffic policies. As a concluding remark, it is better to design traffic policies and regulations in the way that peoples' preference and expectation.

Walking Will Recognition Algorithm for Walking Aids Based on Torque Estimation (모터 토크 추정을 통한 보행보조기의 의지파악 알고리즘)

  • Kong, Jung-Shik
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.162-169
    • /
    • 2010
  • This paper deals with the recognition algorithm of walking will based on torque estimation. Recently, concern about walking assistant aids is increasing according to the increase in population of elder and handicapped person. However, most of walking aids don't have any actuators for its movement. So, general walking aids have weakness for its movement to upward/download direction of slope. To overcome the weakness of the general walking aids, many researches for active type walking aids are being progressed. Unfortunately it is difficult to control aids during its movement, because it is not easy to recognize user's walking will. Many kinds of methods are proposed to recognize of user's walking will. In this paper, we propose walking will recognition algorithm by using torque estimation from wheels. First, we measure wheel velocity and voltage at the walking aids. From these data, external forces are extracted. And then walking will that is included by walking velocity and direction is estimated. Here, all the processes are verified by simulation and experiment in the real world.

Installation Status of Information Facilities and Condition of Walking Road Influencing to Psychological Safety of Walking Tourists - Focusing on the Course No. 16 of Jeju Olle Trail, Sarabong·Byeoldobong Walkway in Jeju and the Course No. 8 of Bougil, Gyeongpo Lake Walkway in Gangneung - (도보여행자의 심리적 안전에 영향을 미치는 도보길 환경과 정보시설물의 설치 현황 - 제주올레 16코스와 사라봉·별도봉 산책로, 강릉바우길 8구간과 경포호 산책로를 대상으로 -)

  • Byun, Kyeonghwa;Kim, Young-duk
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.18 no.3
    • /
    • pp.25-34
    • /
    • 2016
  • The purpose of this study is to investigate installation status of information facilities and condition of walking road influencing to psychological safety of walking tourists. For this purpose, four roads for walking tour are selected; the course no. 16 of Jeju Olle Trail, Sarabong Byeoldobong walkway in Jeju and the course no. 8 of Bougil, Gyeongpo Lake walkway in Gangneung. Facilities installed on roads for walking tour are classified into four facilities; safety facility, information facility, amenity facility, local cultural facility. In order to consider installation status of information facilities and condition of walking road influencing to psychological safety of walking tourist, a field experiment was conduced focusing on the course no. 16 of Jeju Olle Trail. Thirteen cases were happened as confusing situation while walking tour. Of the 13 cases, the situation of being lost and wandering on the trail accounted for six cases. In contrast to the expectation that the situation of being lost and wandering would occur only at a crossroads, it is not that such situation took place at specific places like a crossroads or where direction signs were inaccurate. Walking tourists of this field experiment also confronted situations of having lost confidence about continuing the ongoing direction, of having anxiety over walking a walking trail, of feeling discomfort caused by walking and of being offended by uncomfortable or messy areas of walking trial. These confusing situations are happened inappropriate installation of direction sign, so direction sign is needed to install more carefully and detailed.

Passenger Ship Evacuation Simulation using Algorithm for Determination of Evacuating Direction based on Walking Direction Potential Function (보행 방향 포텐셜 함수 기반의 탈출 경로 결정 알고리즘을 이용한 여객선 승객 탈출 시뮬레이션)

  • Ha, Sol;Cho, Yoon-Ok;Ku, Namkug;Park, Kwangphil;Lee, Kyu-Yeul;Roh, Myung-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.307-313
    • /
    • 2013
  • This paper presents a simulation for passenger ship evacuation considering determination of evacuating direction based on walking direction potential function. In order to determine walking direction of a passenger, his/her position in two dimensional plane was adopted as a design variable, and fixed boundaries such as walls and obstacles were adopted as constraints. To solve this optimum problem, a walking direction potential function was adopted as an objective function. This potential function was configured as a kind of penalty function and it contained two components. One is a potential function concerned with the distance to the destination, and other is a potential function based on the effect of walls and obstacles. To determine evacuating direction, this problem was solved by minimizing the walking direction potential function every unit time during the simulation. The crowd behavior of the passenger consisted of the flock behavior, a form of collective behavior of a large number of interacting passengers with a common group. With the proposed algorithm, the test problems in International Maritime Organization, Maritime Safety Committee/Circulation 1238(IMO MSC/Circ.1238) were implemented and the direction of passengers and total evacuation time was analyzed.

Walking load model for single footfall trace in three dimensions based on gait experiment

  • Peng, Yixin;Chen, Jun;Ding, Guo
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.937-953
    • /
    • 2015
  • This paper investigates the load model for single footfall trace of human walking. A large amount of single person walking load tests were conducted using the three-dimensional gait analysis system. Based on the experimental data, Fourier series functions were adopted to model single footfall trace in three directions, i.e. along walking direction, direction perpendicular to the walking path and vertical direction. Function parameters such as trace duration time, number of Fourier series orders, dynamic load factors (DLFs) and phase angles were determined from the experimental records. Stochastic models were then suggested by treating walking rates, duration time and DLFs as independent random variables, whose probability density functions were obtained from experimental data. Simulation procedures using the stochastic models are presented with examples. The simulated single footfall traces are similar to the experimental records.

A Study on Kinematic Analysis of Trunk and Lower Extremities in Stance Phase of Walking according to Turning Direction (보행 방향 전환 시 입각기 하지 및 체간의 운동형상학적 분석)

  • Oh, Tae-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.2
    • /
    • pp.88-95
    • /
    • 2013
  • Purpose: The purpose of this study was to conduct an analysis of kinematics of lower extremities and trunk in stance phase of walking according to turning direction. Methods: Ten university students (five male, five female) who were in their 20s (mean age was 20.6 years old) participated in this study. Participants did not have participants did not have any problem with skeletal muscular system. We used the "Qualisys motion capture system" for analysis of trunk and lower extremity movement in stance phase of walking according to turning direction. We collected data while subjects walked a distance of 10 m, and at the 6 m line, subjects were required to turn to the left side and the right leg was positioned in stance phase and the left leg was positioned in swing. For data analysis, the SPSS for Windows ver. 20.0 statistics program was used in performance of one way analysis of variance according to turning direction. Results: Significant difference of trunk and lower extremities was observed for turning direction according to walking cycle (p<0.05). Upper trunk movement showed a greater increase at three dimensions than lower trunk, and in heel off phase, pelvic movement showed a greater increase than lower trunk (p<0.05). In 45 degree and 90 degrees of turning direction, all movements of trunk and lower extremities were significantly different among three events of stance phase (p<0.05). Conclusion: We suggest that three-dimensional movement analysis of trunk and lower extremities during turning movement was very important in order to indicate increasing balance or walking ability for people with impaired movement or walking.

Classification of walking patterns using acceleration signal (가속도 신호를 이용한 걸음걸이 패턴 분류)

  • Jo, Heung-Kuk;Ye, Soo-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1901-1906
    • /
    • 2010
  • This classification of walking patterns is important and many kinds of applications. Therefore, we attempted to classify walking on level ground from slow walking to fast walking using a waist acceleration signal. A tri-axial accelerometer was fixed to the subject's waist and the three acceleration signals were recorded by bluetooth module at a sampling rate of 100 Hz eleven healthy. The data were analyzed using discrete wavelet transform. Walking patterns were classified using two parameters; One was the ratio between the power of wavelet coefficients which were corresponded to locomotion and total power in the anteroposterior direction (RPA). The other was the ratio between root mean square of wavelet coefficients at the anteroposterior direction and that at the vertical direction(RAV). Slow walking could be distinguished by the smallest value in RPA from other walking pattern. Fast walking could be discriminated from level walking using RAV. It was possible to classify the walking pattern using acceleration signal in healthy people.

A study on walking aids for the blind (시각장애자의 보행지원에 관한 연구)

  • Ham, K.K.;Han, S.H.;Yang, S.Y.;Kim, H.G.;Huh, W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.131-135
    • /
    • 1997
  • We implementated an ultrasonic wave cane for the blind. The cane detect walking obstacle and provide a walking direction. The cane used time of flight method of ultrasonic-wave for a measurement of obstacle distance and fluxgate geomagnetic sensor for guidance of walking direction. This system can detect an obstacle of upward, forward, downward and that warn to the blind with vibration, pitch sound. And the blind can know walking direction to voice output. As a result, the blind could efficiently avoid a exposed obstacle, obstacles beyond knee, an exposed street obstacle, a branch of tree person's height and it is usable search for surrounding land mark.

  • PDF

A study on an adaptive gait for a quadruped walking robot under external forces (외력 대처 기능을 갖는 사각 보행 로보트 적응 걸음새에 관한 연구)

  • ;;;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.1-12
    • /
    • 1996
  • In this paper, we propose an adaptive gait by which a quadruped walking robot can walk against external disturbances. This adaptive gait mechanism makes it possible for a quadruped walking robot to change its gait and accommodate external disturbances form various external environmental factors. Under the assumption that external disturbances can be converted to an external force acting on the body of a quadruped walking robot, we propose a new criterion for the stability margin of a waling robot by using an effective mass center based on the zero moment point under unknown external force. And for a solution of an adaptive gait against external disturbances, an method of altitude control and reflexive direction control is suggested. An algorithmic search method for an optimal stride of the quadruped mehtod, the gait stability margin of a quadruped walking robot is optimized in changing its direction at any instance for and after the reflexive direction control. To verify the efficiency of the proposed approach, some simulaton results are provided.

  • PDF

Age-Related Change of Upper Body Contribution to Walking Speed (보행스피드에 대한 상체 공헌도의 연령에 따른 변화)

  • Bae, Yeoung-Sang
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.27-36
    • /
    • 2007
  • The purpose of this study was to investigate the effect of the upper body in order to increase a propulsive force in the old's walking. The subjects were each 10 males, the latter term of the aged and former term of the aged. There were three walking speeds of slow(about 5km/h), medium(about 6km/h), and maximum speed(about 7km/h). The subjects walking 11m were filmed the 5m section (from 3m to 8m) by 2-video cameras using three dimensional cinematography. And we computed different mechanical quantities and especially computed the relative momentum in order to achieve this study's aim. In this study, we was able to acquire some knowledge. The step length and step frequency increased in proportion to the walking speed, and the faster walking speed, the shorter ratio of supporting time( both legs supporting time/one step length time). When it was one leg support phase, the torso was indicated to generate the momentum in order to produce the propulsive force of walking. The upper and lower body had a cooperative relation for walking such as keeping step rate with the arms to legs and maintaining the body balance. The opposition phase for upward-and-downward direction of the torso and arms in walking was functioned to prevent the increase rapidly toward vertical direction of the center of gravity. The arms had contributed to coordinate the tempo of legs and the posture maintenance of the upper body. And by absorbing the relative momentum from the upper torso with arms to the lower torso, it had the rhythmical movement on upward-and-downward direction reducing the vertical reaction force. On account of the relations of absorption and generation of the propulsive force and the production of vertical impulse in the lower torso when walking by maximum speed, it was showed that the function of lower torso was come up as important problem for the mechanical posture stability and propulsive force coordination.