• Title/Summary/Keyword: Walking control

Search Result 1,032, Processing Time 0.025 seconds

The Effects of Breathing Control on Kinetic Parameters of Lower Limbs during Walking Motion in Korean Dance (한국무용 걸음체 동작 시 호흡의 사용유무가 하지의 운동역학적 변인에 미치는 영향)

  • Park, Yang-Sun;Jang, Ji-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.627-636
    • /
    • 2009
  • This study aims to provide a scientific basis for the abstract beauty of dance by analyzing the effects of controlling the breath during the walking motion of Korean dance. The objective of the study is to determine the significance of breathing during Korean dance, as it is externally expressed and technologically segmented, let alone the internal beauty of Korean dance. The results of this study show that the position of the body center and ASIS during the walking motion that uses breath was lower than that of the walking motion that does not use the breath. In addition, in each replacement of the knee joint and ankle joint, a narrow angle, in which bending is used a lot, appeared during the walking motion that uses the breath, but not during the walking gesture that does not use the breath. This occurred during the bending motion. In the first peak point, the vertical ground reaction force during the walking motion that uses the breath was higher than that during the walking motion that does not use the breath.

Effects of Artificial and Natural Selection on Walking Behavior in Drosophila melanogaster (초파리의 보행행동에 관한 인위도태와 자연도태에 의한 유전적 효과)

  • 주종길;이현화
    • The Korean Journal of Zoology
    • /
    • v.26 no.2
    • /
    • pp.95-106
    • /
    • 1983
  • Selections for rapid and slow walking behavior were carried out with the populations, drived from Oregon-R and lethal free strain of Drosophila melanogaster. The behavior was measured by means of connected test-tube apparatus. The populations responded effectively to the artificial selection, and it reached the selection plateau after 7 generations. The realized heritability for the first 10 generations was estimated to be about $9\\sim14%$ for the rapid walking behavior, and those for slow walking behavior was about $11\\sim16%$. The results of hybridization analysis between selected populations at generations 8 and 10 indicated that some polygenes showing a slow walking behavior were partially dominant over polygenes controlled rapid trait. The populations selected for rapid and slow walking behavior were relaxed after 10 generations of selection. The response to natural selection of rapid population was completely returned to their neutral states after only 5 generations. Such phenomena would be explained by the genetic homeostasis resulted from an action of natural selection. However, the slow population did not make any difference from walking scores of their original artificial selection. It seems reasonable to assume that the slow walking behavior was possibly controlled by a major gene.

  • PDF

Robust Walking Algorithm of Biped Robot on Uneven Terrain (비평탄 지형에서 이족로봇의 강인한 보행 알고리즘)

  • Lee, Bo-Hoon;Park, Jong-Han;Lee, Chang-Seok;Kim, Yong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.33-39
    • /
    • 2011
  • Biped robot with high DOF has instability in mechanism. Therefore, it is important to guarantee walking stability of biped robot. Biped robot can stably walk on the flat ground using static walking patterns. However, walking stability of robot becomes increasingly worse on the uneven terrain. In the paper, we propose a robust walking algorithm of biped robot with motion stabilization to solve the problem The proposed algorithm was designed to stabilize walking motions based on the inclination of robot body using a gyro sensor and a accelerometer equipped in the center of the upper body. If unstable motions are recognized, angles of each joints are modified to increase stability by using compensation of angles of lower legs. The experimental results show that biped robot performs stable walking on the uneven terrain.

Spatiotemporal Movement Density and Stopping Characteristics of Urban Walking Tourists by Season - Focused on Tourists of Bukchon Hanok Village in the Spring and Summer - (도심 도보관광자의 계절별 시·공간 이동밀도 및 멈춤 특성 - 북촌한옥마을의 봄·여름 관광자들을 대상으로 -)

  • Yun, Hee Jeong;Kang, Dong Jin;Shin, Sang Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.4
    • /
    • pp.1-11
    • /
    • 2019
  • The purpose of this study is to determine urban walking tourists' spatiotemporal movement densities and the stopping characteristics by season. With the Bukchon Hanok Village in Seoul, as the study site, a GPS-based smartphone application collected spatiotemporal data, and GIS and statistical methods were used to analyze the urban walking tourists' spatiotemporal activities in the spring and summer. The results show that the moving and staying variables of urban walking tourists differ significantly by season. In addition, spatiotemporal movement densities and stopping characteristics using ArcGIS's tools show clear spatial and temporal concentrations along the main access roads and commercial areas of the study site in the spring and summer. Policy-makers and developers of urban walking tours should use these spatiotemporal concentrations of walking tourists to define policies that would control the capacities of urban walking areas and distribute tourists spatially and temporally.

A Study on Pedestrian Priority Actuated Signal Control Considering Waiting Time for Walking and Pedestrian Stress (보행대기시간과 보행자스트레스를 고려한 보행자우선 감응신호 운영방안 연구)

  • Choi, Bongsoo;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.18-29
    • /
    • 2022
  • Since the operation of an reft-turn actuated signal driven mainly by vehicles may increase the waiting time for walking, this signal causes inconvenience or stress to pedestrians. Therefore, in this study, the change in waiting time for walking before and after the application of an reft-turn actuated signal and the stress on the pedestrians were investigated through a questionnaire. The investigation showed that the waiting time for walking increased by 37% during non-peak time. Also the waiting time for walking of 62.1% of pedestrians became longer and 78% of them were stressed because of it. Meanwhile, simulation(VISSIM) showed that the vehicle travel speed slightly decreased to 1.07km/h(a 2.5% decrease), and the average waiting time for walking decreased by 15.51sec(a 28% decrease) with a pedestrian priority actuated signal. Therefore, it is expected that the pedestrian priority actuated signal can reduce the waiting time for walking and relieve pedestrian stress.

Navigation Trajectory Control of Security Robots to Restrict Access to Potential Falling Accident Areas for the Elderly (노약자의 낙상가능지역 진입방지를 위한 보안로봇의 주행경로제어)

  • Jin, Taeseok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.497-502
    • /
    • 2015
  • One of the goals in the field of mobile robotics is the development of personal service robots for the elderly which behave in populated environments. In this paper, we describe a security robot system and ongoing research results that minimize the risk of the elderly and the infirm to access an area to enter restricted areas with high potential for falls, such as stairs, steps, and wet floors. The proposed robot system surveys a potential falling area with an equipped laser scanner sensor. When it detects walking in elderly or infirm patients who in restricted areas, the robot calculates the velocity vector, plans its own path to forestall the patient in order to prevent them from heading to the restricted area and starts to move along the estimated trajectory. The walking human is assumed to be a point-object and projected onto a scanning plane to form a geometrical constraint equation that provides position data of the human based on the kinematics of the mobile robot. While moving, the robot continues these processes in order to adapt to the changing situation. After arriving at an opposite position to the human's walking direction, the robot advises them to change course. The simulation and experimental results of estimating and tracking of the human in the wrong direction with the mobile robot are presented.

Wearable and Motorized Crutch Control System (착용형 전동 목발 제어시스템)

  • Yoon, Dukchan;Jang, Giho;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.133-139
    • /
    • 2014
  • This paper proposes a wearable and motorized crutch control system for the patients using the conventional crutches. The conventional crutches have a few disadvantages such as the inconvenience caused by the direct contact between the ground and the armpit of the patients, and unstable gait patterns. In order to resolve these problems, the motorized crutch is designed as a wearable type on an injured lower limb. In other words, the crutch makes the lower limb to be moved forward while supporting the body weight, protecting the lower limb with frames, and rotating a roller equipped on the bottom of the frames. Also the crutch is controlled using the electromyography and two force sensing resistor (FSR) sensors. The electromyography is used to extract the walking intention from the patient and the FSR sensors to classify the stance and swing phases while walking. As a result, the developed crutch makes the patients walk enabling both hands to be free, as if normal people do.

A Study on the Determination of Linear Model and Linear Control of Biped Robot (이족로봇의 선형모델결정과 제어에 관한 연구)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.765-768
    • /
    • 2000
  • Linearization of the biped dynamic equations and design of linear controller for the linearized equations are studied in this paper. The biped robot with inverted pendulum type trunk, used to stabilize the dynamic balancing of the biped robot during dynamic walking period, is modelled with 14 DOF and simulated. Despite of well defined linear control theories so far, the linear control methods was limited to the applications for a walking robot, because they have been inherently strong nonlinear properties, such as a modeling parameter uncertainties, external forces as noise, inertial and Coriolis terms by three dimensional modeling and so on. To linearize the nonlinear equations of motion of biped robot on MIMO and time varying linear equations of motion, 1st order Taylor series is used to formulate the linear equation. And a 2nd order numerical perturbation method Is used to approximate partial differential equations. Using the linearized equations of motion, a linear controller is designed by pole placement method with feed forward compensation. Using the obtained linearized equations and linear controller, the continuous walking simulation is performed.

  • PDF

A Study on the Posture Control of a Humanoid Robot (휴머노이드 로봇의 자세 제어에 관한 연구)

  • Kim Jin-Geol;Lee Bo-Hee;Kong Jung-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.77-83
    • /
    • 2005
  • This paper deals with determination of motions of a humanoid robot using genetic algorithm. A humanoid robot has some problems of the structural instability basically. So, we have to consider the stable walking gait in gait planning. Besides, it is important to make the smoothly optimal gait for saving the electric power. A mobile robot has a battery to move autonomously. But a humanoid robot needs more electric power in order to drive many joints. So, if movements of walking joints don't maintain optimally, it is difficult for a robot to have working time for a long time. Also, if a gait trajectory doesn't have optimal state, the expected life span of joints tends to be decreased. To solve these problems, the genetic algorithm is employed to guarantee the optimal gait trajectory. The fitness functions in a genetic algorithm are introduced to find out optimal trajectory, which enables the robot to have the less reduced jerk of joints and get smooth movement. With these all process accomplished by a PC-based program, the optimal solution could be obtained from the simulation. In addition, we discuss the design consideration for the joint motion and distributed computation of the humanoid, ISHURO, and suggest its result such as the structure of the network and a disturbance observer.

The Effects of an Overweight Control Exercise Program in Elementary School Students (줄넘기운동과 걷기운동을 통한 소아비만관리 프로그램의 효과)

  • Go, Young-Aie;Baek, Hee-Chong;Hwang, In-Young
    • Research in Community and Public Health Nursing
    • /
    • v.18 no.4
    • /
    • pp.535-542
    • /
    • 2007
  • Purpose: The purpose of this study was to identify the effects of an overweight control exercise program on body composition and blood lipids. Method: This comparative study was conducted at an elementary school in Seoul, Korea. Pre and post body weight, BMI, PBF, and obesity degree as body composition and TC, HDL-C, LDL-C, and TG as blood lipids were tested. The aerobic exercise lasted 12 weeks from April to July, 2006. A total of 168 overweight 3rd grade to 5th grade school children attended and were divided into a walking exercise group (n=68) and a rope jumping exercise group (n=38). Data were analysed using SAS 8.12. Result: At the end of the program, the participation rate was higher in the rope jumping exercise group than in the walking exercise group. Body weight, BMI, PBF, obesity degree, TC, and LDL-C were lower than those before the program, and HDL-C was higher than before the program. Conclusion: The school-based overweight control exercise program was effective. Because of the participation rate was higher in the rope jumping exercise group than in the walking exercise group, rope jumping exercise is recommended for low grade children.

  • PDF