• 제목/요약/키워드: Walking Orthosis

Search Result 48, Processing Time 0.027 seconds

Change of energy consumption according to loading on the ankle of normal adults during gait (정상 성인의 발목에 부가된 하중에 의한 보행 중 에너지 소모도 변화)

  • Kim Bong-Ok;Chae Su-Sung;Kim Yong-Gun;Han Dong-Uck
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.2
    • /
    • pp.43-50
    • /
    • 1999
  • The purpose of this study was to evaluate the change of the energy consumption when loading to leg of the 60persons who don't have past history of cardiopulmonary and neuromuscular disease, To evaluate the change or energy consumption, heart rate was measured in sitting position for 5minute, during walking for 3minute at for 4.8km on treadmill, and during resting state after walking with 1Kg loading to right ankle, and the other 1Kg loading was added to left ankle and then heart rates were measured in the The results were as follow; 1. PCI value without loading to Ankle were significantly increased compared to 1Kg, and 2Kg. (p<0.05) 2. Female Subjects showed mon increased PCI value in without leading and 2Kg loading compared to male subjects. ( p<0.05) 3. When 1Kg ana 2Ka loading to ankle significantly differences were showed between them. (p<0.05) 4. In the case of 1Kg and 2Kg loading, the difference among age groups was observed and the significant difference among PCI, PCI 1kg, PCI 2kg was showed in the only group that is less than 30 years old. 5. In every PCI condition the difference among height groups was observed and the significant difference among PCI conditions was showed in the only group that is less than 165cm. 6. The difference among weight groups in each PCI condition was not observed, but the significant differences among PCI conditions was showed in every group except the group that h from 60kg to 69kg. These results showed that energy consumption was increased according to loading on the ankle during Sate so weight of orthosis or prosthesis met be considered when choosing them and during gait training with these ones.

  • PDF

Effects of Limited Hyperextension at Knee Joint Using Limited Motion Knee Brace on Balance, Walking in Patients with Hemiplegia (슬관절 움직임 제한 보조기를 이용한 슬관절 과신전 제한이 편마비 환자의 균형과 보행에 미치는 영향)

  • Lee, Eun-Hyuk;Min, Kyung-Ok;Lee, Kang-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.258-265
    • /
    • 2010
  • The purposes of this study was to determine the effects of limited hyperextension at knee joint using Limited Motion Knee Brace on balance and walking in patients with hemiplegia. The subjects of this study were 20 post-stroke hemiplegic patients admitted. Subjects were randomly assigned to either experimental group (Limited Motion Knee Brace group) or control group (manual restriction group). Both groups received traditional physical therapy intervention. The effects of each therapeutic method were evaluated by measurements of gait ability assesment, Berg balance scale (BBS), 10-meter walk speed (10MWS), Timed Up & Go (TUG) Test. The results of this research were as followings: (1) After treatment, there were significant BBS scores differences in both experimental and control group compared with pre-treatment(p<0.05). (2) After treatment, there were significant TUG test scores differences in both experimental and control group compared with pre-treatment (p<0.05). (3) After treatment, there were significant 10MWS differences in both experimental and control group compared with pre-treatment (p<0.05). (4) There were significant BBS scores differences in third and fourth week between experimental and control group (p<0.05). It was concluded that Limited Motion Knee Brace was effective for improving balance and for reducing fatigue for experimental group. Therefore, further studies are required to investigate the effect of knee orthosis for improving balance and walking in patients with hemiplegia.

Individual customized insole model (개인 맞춤형 자동 변형 인솔 모델)

  • Song, Eungyeol;Kim, Kyoungtae;Kim, Sang-hoon;Lee, Sangyoun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.323-329
    • /
    • 2016
  • This paper describes an insole FFO(Functional Foot Orthosis) model for comfortable walking by considering weight distribution. There are many ways to make an insole FFO model such as using 3D computer graphics, or plaster manually. Thus, we proposed a standardized way to make an insole model, specifically called, robust and automatically personalized deformable insole model. Our proposed method showed 0.8cm average error compared between our proposed auto-deformable insole model and the other insole model manually deformed by experts. Therefore, our proposed method can be an efficient way to make a customized insole model with small error compared to the manually customized insole model.

Knee Joint Control of New KAFO for Polio Patients Gait Improvement (소아마비 환자의 보행개선을 위한 새로운 장하지 보조기의 무릎관절 제어)

  • 강성재;조강희;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.132-135
    • /
    • 2002
  • In the present study, an electro-mechanical KAFO (knee-ankle-foot orthosis) which satisfies both the stability in stance and the knee flexion in swing was developed and evacuated in eight polio patients. A knee joint control algorithm suitable for polio patients who are lack of the stability in pre-swing was also developed and various control systems and circuits were also designed. In addition, knee flexion angles and knee moments were measured and analyzed for polio patients who used the developed KAFO with the three-dimensional motion analysis system. Energy consumption was also evaluated for the developed KAFO by measuring the movement of the COG (center of gravity) during gait. From the present study, the designed foot switch system successfully determined the gait cycle of polio patients and controlled knee joint of the KAFO, resulting in the passive knee flexion or foot clearance during swing phase. From the three-dimensional gait analysis for polio patients, it was found that the controlled-knee gait with the developed electro-mechanical KAFO showed the knee flexion of 40$^{\circ}$∼45$^{\circ}$ at an appropriate time during swing. Vertical movements of COG in controlled-knee gait (gait with the developed electro-mechanical KAFO) were significantly smaller than those in looked knee gait(gait with the locked knee Joint). and correspondingly controlled-knee gait reduced approximately 40% less energy consumption during horizontal walking gait. More efficient gait patterns could be obtained when various rehabilitation training and therapeutic programs as well as the developed electro-mechanical KAFO were applied for polio patients.

  • PDF

The Effects of Foot Intrinsic Muscle and Tibialis Posterior Strengthening Exercise on Plantar Pressure and Dynamic Balance in Adults Flexible Pes Planus

  • Lee, Da-bee;Choi, Jong-duk
    • Physical Therapy Korea
    • /
    • v.23 no.4
    • /
    • pp.27-37
    • /
    • 2016
  • Background: In previous studies regarding flexible pes planus, Foot orthosis, special shoes have been used as interventions for correcting malalignment and intrinsic muscles strengthening exercise have been regarded as interventions for foot function and supporting medial longitudinal arch during walking. However, some recent studies reported that strengthening extrinsic muscles as well as intrinsic muscles is more effective and active intervention for flexible pes planus. In particular, the tibialis posterior muscle of foot extrinsic muscles plays essential roles in maintaining the medial longitudinal arch during dynamic weight bearing and balance. In addition this muscle acts longer than other supination muscles during the stance phase in the gait cycle. Objects: This study aimed to investigate the effect of foot intrinsic muscle and tibialis posterior muscle strengthening exercise for plantar pressure and dynamic balance in adults with flexible pes planus. Methods: 16 young flexible pes planus adults (7 males, 9 females) were recruited and were randomized into two groups. The experimental group performed foot intrinsic muscle and tibialis posterior muscle strengthening training, the control group performed only foot intrinsic muscle strengthening training. All groups received strengthening training for 30 minutes five times a week for six weeks. Results: The experimental group had significantly lower plantar pressure of medial heel area than the control group in stand (p<.05). The experimental group had significantly higher dynamic balance ability than control group (p<.05). Conclusion: The results of this study provide evidence to suggest that foot intrinsic muscle and tibialis posterior muscle of extrinsic muscle strengthening exercises may improve plantar pressure distribution and dynamic balance ability in adults with flexible pes planus.

Comparison of spatio-temporal gait parameters according to shoe types in chronic stroke survivors: a preliminary study

  • Hong, Soung Kyun;Park, Su Ho;Shin, Sung Ri;Lee, Dong Geon;Lee, Seung Hoo;Jung, Sun Hye;Pyo, Seung Hyeon;Lee, Kyeong-Bong;Lee, Gyu Chang
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.1
    • /
    • pp.23-28
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the impact of wearing various types of shoes on gait ability in stroke survivors and in order to gain information in regards to shoes that could possibly replace ankle orthosis. Design: Cross-sectional study. Methods: Eight hemiplegic survivors diagnosed with stroke participated in the study. Gait was analyzed using the GAITRite Electronic Walkway (CIR System Inc., USA) when subjects walked with no showed, walked with non-ankle-covered shoes, and walked with ankle-covered shoes. This study collected gait variables, including velocity, cadence, step length, stride length, single support time, and double support time, respectively. Results: In the comparison of walking with no shoes, non-ankle-covered shoes, and ankle-covered shoes, there were significant differences in gait velocity, step length, stride length, and the less affected side single support time (p<0.05). However, there were no significant differences in cadence, affected side single support time, and double support time. Conclusions: Ankle-covered shoes had a positive impact on the gait of stroke survivors. However, it is necessary to conduct more studies comparing various types of shoes with ankle orthoses.

Differences in Spatiotemporal Gait Parameters and Lower Extremity Function and Pain in Accordance with Foot Morphological Characteristics (발의 형태학적 특성에 따른 시공간 보행 변인과 하지의 기능 및 통증 차이)

  • Jeon, Hyung Gyu;Lee, Inje;Lee, Sae Yong;Ha, Sunghe
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.95-103
    • /
    • 2021
  • Objective: The aim of this study was to investigate the differences in spatiotemporal gait performance, function, and pain of lower-extremity according to foot morphological characteristics. Method: This case-control study recruited 42 adults and they were classified into 3 groups according to foot morphology using navicular-drop test: pronated (≥ 10 mm), normal (5~9 mm), and supinated (≤ 4 mm) feet. Spatiotemporal gait analysis and questionnaires including Foot and Ankle Ability Measure activities of daily living / Sports, Western Ontario and McMasters Universities Osteoarthritis Index, Lower Extremity Functional Scale, International Physical Activity Questionnaire, and Tegner activity score were conducted. One-way analysis of variance was used for statistical analysis. Results: The pronated feet group showed longer loading response and double limb support in both feet and increased pre-swing phase in non-dominant feet. The supinated feet group demonstrated a longer swing phase in non-dominant feet and single limb support in dominant feet. However, there was no significant group difference in function and pain of knee joint and lower-extremity between groups. Conclusion: Our results indicated that abnormal spatiotemporal gait performance according to foot morphology. Although there was no difference in lower extremity dysfunction and pain according to the difference in foot morphology, they have the possibility of symptom occurs as a result of continuous participation in activities of daily living and sports. Therefore, individuals with pronated or supinated foot should be supplemented by utilizing an orthosis or training to restore normal gait performance.

Effects of the Patellar Tendon Strap on Kinematics, Kinetic Data and Muscle Activity During Gait in Patients With Chronic Knee Osteoarthritis

  • Eun-Ji Lee;Ki-Song Kim;Young-In Hwang
    • Physical Therapy Korea
    • /
    • v.30 no.2
    • /
    • pp.110-119
    • /
    • 2023
  • Background: Osteoarthritis is a common condition with an increasing prevalence and is a common cause of disability. Osteoarthritic pain decreases the quality of life, and simple gait training is used to alleviate it. Knee osteoarthritis limits joint motion in the sagittal and lateral directions. Although many recent studies have activated orthotic research to increase knee joint stabilization, no study has used patellar tendon straps to treat knee osteoarthritis. Objects: This study aimed to determine the effects of patellar tendon straps on kinematic, mechanical, and electromyographic activation in patients with knee osteoarthritis. Methods: Patients with knee osteoarthritis were selected. After creating the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), leg length difference, Q-angle, and thumb side flexion angle of the foot were measured. Kinematic, kinetic, and muscle activation data during walking before and after wearing the orthosis were viewed. Results: After wearing the patellar tendon straps, hip adduction from the terminal stance phase, knee flexion from the terminal swing phase, and ankle plantar flexion angle increased during the pre-swing and initial swing phases. The cadence of spatiotemporal parameters and velocity increased, and step time, stride time, and foot force duration decreased. Conclusion: Based on the results of this study, the increase in plantar flexion after strap wearing is inferred by an increase due to neurological mechanisms, and adduction at the hip joint is inferred by an increase in adduction due to increased velocity. The increase in cadence and velocity and the decrease in gait speed and foot pressure duration may be due to joint stabilization. It can be inferred that joint stabilization is increased by wearing knee straps. Thus, wearing a patellar tendon strap during gait in patients with knee osteoarthritis influences kinematic changes in the sagittal plane of the joint.