• Title/Summary/Keyword: Walking Network

Search Result 159, Processing Time 0.023 seconds

Implementation of Multiple Nonlinearities Control for Stable Walking of a Humanoid Robot (휴머노이드 로봇의 안정적 보행을 위한 다중 비선형 제어기 구현)

  • Kong, Jung-Shik;Kim, Jin-Geol;Lee, Bo-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.215-221
    • /
    • 2006
  • This paper is concerned with the control of multiple nonlinearities included in a humanoid robot system. A humanoid robot has some problems such as the structural instability, which leads to consider the control of multiple nonlinearities caused by driver parts as well as gear reducer. Saturation and backlash are typical examples of nonlinearities in the system. The conventional algorithms of backlash control were fuzzy algorithm, disturbance observer and neural network, etc. However, it is not easy to control the system by employing only single algorithm since the system usually includes multiple nonlinearities. In this paper, a switching Pill is considered for a control of saturation and a dual feedback algorithm is proposed for a backlash control. To implement the above algorithms, the system identification is firstly performed for the minimization of the difference between the results of simulation and experiment, and then the switching Pill gains are determined using genetic algorithm with some heuristic approach. The performance of the switching Pill controller for saturation and the dual feedback for backlash control is investigated through the simulation. Finally, it is shown that the implemented control system has good results and can be applied to the real humanoid robot system ISHURO.

A Study on the Current Situation and Improved Method for the Smombie through Field Survey and ICT Trend Analysis (현장 조사와 ICT 동향 분석을 통한 스몸비 현황과 개선 방안 연구)

  • Lee, Dong Hoon;Oh, Hye Soo;Jang, Jae Min;Jeong, Jong Woon;Yang, Sang Oon
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.74-85
    • /
    • 2020
  • Smart phone zombie or Smombie means pedestrians who walk without attention to their surroundings because they are focused upon their smart phone. Because the traffic accidents and injuries caused by Smombie have been increased rapidly in recent years, the social attention and policies are needed to prevent it. This study was conducted to analyze Smombie's current status and some solutions used before and to propose new improved method through the latest ICT trend. In this study, we did the field survey to check Smombies at several places in Seoul through people counting, and found that a lot of pedestrians still use the smart phone while walking. And we analyzed many case studies about some solutions to prevent Smombies previously. The case studies include legal regulations, government policies, smart phone app services and facilities that are used before. We studied them through internet searches and reference studies and we also checked the current operating situation as visiting several places that the solutions actually has been operated. Therefore, we found there are some limitations in previous solutions in terms of effectiveness and management. To consider new solution that can be expected to overcome the limitations, we analyzed the latest ICT trends focused on features to utilize the Smombie prevention, especially video recognition and digital signage. In these days, video recognition has been developed rapidly with assistance of AI technology and it can recognize the specific pedestrian's characteristics such as holding smart phone as well as hair style, clothes, backpack and etc. On the other hands, the digital signage is the convergence device that includes big display, network connection and various IoT sensors. It can be used as public media in many places for public services as well as advertising. Through these analysis results, we show the requirements and the user scenario for the improved method to prevent Smombie. Finally, we propose to develop R&D technology to recognize Smombie exactly as pedestrian attributes and to spread creative contents to increase pedestrian's interest and engagement for Smombie prevention through digital signage.

Evaluating Value of Information on Bus-Route Concerning on the User's Individual Value (이용자 개인의 버스 환승 노선정보의 이용가치 평가)

  • Park, Yong-Jin;Kang, Sin-Hwa
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.89-99
    • /
    • 2004
  • The purpose of this study is to evaluate the value of information on Bus-Route concerning on the User's Individual value. The value of information is estimated with the price of time saving by using the information. The price of unit time for each user is applied to convert the saving time to the cost. To estimate the user's expense from origin to destination the previous model is modified. Bus-travel cost is estimated with variables such as bus-travel time, bus-interval, bus-fare, and the price of walking distance. In this study, to estimate in-vehicle time the bus-travel time model is developed based on the spatial characteristics distinguished by three types of circular-road in the network of Daegu Metropolitan area. For the case study, a set of the origin and destination is selected as Dalsu-gu District Office and East Daegu Train Station respectively. There are several bus-routes which can be used as direct or transferable bus-routes selected. The study showed that when the value of time for individual users is \1,738/hr, there is no benefit to using information of transferable bus-routes. It also showed that the more discount rates of bus fare is increased, the benefit to using information of transferable bus-routes is increased, and that the lower value of time is, the benefit to using information of transferable bus-routes is increased.

A Supervised Learning Framework for Physics-based Controllers Using Stochastic Model Predictive Control (확률적 모델예측제어를 이용한 물리기반 제어기 지도 학습 프레임워크)

  • Han, Daseong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • In this paper, we present a simple and fast supervised learning framework based on model predictive control so as to learn motion controllers for a physic-based character to track given example motions. The proposed framework is composed of two components: training data generation and offline learning. Given an example motion, the former component stochastically controls the character motion with an optimal controller while repeatedly updating the controller for tracking the example motion through model predictive control over a time window from the current state of the character to a near future state. The repeated update of the optimal controller and the stochastic control make it possible to effectively explore various states that the character may have while mimicking the example motion and collect useful training data for supervised learning. Once all the training data is generated, the latter component normalizes the data to remove the disparity for magnitude and units inherent in the data and trains an artificial neural network with a simple architecture for a controller. The experimental results for walking and running motions demonstrate how effectively and fast the proposed framework produces physics-based motion controllers.

Trip Assignment for Transport Card Based Seoul Metropolitan Subway Using Monte Carlo Method (Monte Carlo 기법을 이용한 교통카드기반 수도권 지하철 통행배정)

  • Meeyoung Lee;Doohee Nam
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.64-79
    • /
    • 2023
  • This study reviewed the process of applying the Monte Carlo simulation technique to the traffic allocation problem of metropolitan subways. The analysis applied the assumption of a normal distribution in which the travel time information of the inter-station sample is the basis of the probit model. From this, the average and standard deviation are calculated by separating the traffic between stations. A plan was proposed to apply the simulation with the weights of the in-vehicle time of individual links and the walking and dispatch interval of transfer. Long-distance traffic with a low number of samples of 50 or fewer was evaluated as a way to analyze the characteristics of similar traffic. The research results were reviewed in two directions by applying them to the Seoul Metropolitan Subway Network. The travel time between single stations on the Seolleung-Seongsu route was verified by applying random sampling to the in-vehicle time and transfer time. The assumption of a normal distribution was accepted for sample sizes of more than 50 stations according to the inter-station traffic sample of the entire Seoul Metropolitan Subway. For long-distance traffic with samples numbering less than 50, the minimum distance between stations was 122Km. Therefore, it was judged that the sample deviation equality was achieved and the inter-station mean and standard deviation of the transport card data for stations at this distance could be applied.

Derivation of Inequality Areas in Spatial Accessibility to Support the Establishment of Neighborhood Unit Plan (생활권계획 수립지원을 위한 공간적 접근성 불평등 지역 분석)

  • Ho-Yong Kim;JiSook Kim
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.3
    • /
    • pp.99-114
    • /
    • 2024
  • Recently, the concept of neighborhood unit plan has been receiving attention due to expectations of balanced development and sustainable development through resolving regional gaps and reflecting regional characteristics. Accessibility to essential living facilities that can support daily life is considered an important factor in neighborhood unit plan. Therefore, this study analyzed accessibility from facilities based on the living facilities and access range set in the neighborhood unit plan, and analyzed spatial accessibility inequality in connection with the neighborhood unit plan and spatial clustering. As a result of analyzing accessibility in Busan Metropolitan City, various accessibility ranges were found depending on the facility. In addition, as a result of analyzing in connection with spatial clustering, regional inequality was found, such as hotspot areas in Gangdong, old downtown, Dongrae, and Haeundae, and coldspot areas in Gangseo and Gijang, and spatial inequality was found in which hotspots and coldspots exist simultaneously within the same neighborhood unit. Considering these spatial characteristics, detailed planning and policy establishment are necessary for facilities lacking in small-size neighborhood units, and the results of the analysis are expected to be meaningful in realizing the urban policy of balanced development that has been recently promoted.

A Time Series Analysis of Urban Park Behavior Using Big Data (빅데이터를 활용한 도시공원 이용행태 특성의 시계열 분석)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.35-45
    • /
    • 2020
  • This study focused on the park as a space to support the behavior of urban citizens in modern society. Modern city parks are not spaces that play a specific role but are used by many people, so their function and meaning may change depending on the user's behavior. In addition, current online data may determine the selection of parks to visit or the usage of parks. Therefore, this study analyzed the change of behavior in Yeouido Park, Yeouido Hangang Park, and Yangjae Citizen's Forest from 2000 to 2018 by utilizing a time series analysis. The analysis method used Big Data techniques such as text mining and social network analysis. The summary of the study is as follows. The usage behavior of Yeouido Park has changed over time to "Ride" (Dynamic Behavior) for the first period (I), "Take" (Information Communication Service Behavior) for the second period (II), "See" (Communicative Behavior) for the third period (III), and "Eat" (Energy Source Behavior) for the fourth period (IV). In the case of Yangjae Citizens' Forest, the usage behavior has changed over time to "Walk" (Dynamic Behavior) for the first, second, and third periods (I), (II), (III) and "Play" (Dynamic Behavior) for the fourth period (IV). Looking at the factors affecting behavior, Yeouido Park was had various factors related to sports, leisure, culture, art, and spare time compared to Yangjae Citizens' Forest. The differences in Yangjae Citizens' Forest that affected its main usage behavior were various elements of natural resources. Second, the behavior of the target areas was found to be focused on certain main behaviors over time and played a role in selecting or limiting future behaviors. These results indicate that the space and facilities of the target areas had not been utilized evenly, as various behaviors have not occurred, however, a certain main behavior has appeared in the target areas. This study has great significance in that it analyzes the usage of urban parks using Big Data techniques, and determined that urban parks are transformed into play spaces where consumption progressed beyond the role of rest and walking. The behavior occurring in modern urban parks is changing in quantity and content. Therefore, through various types of discussions based on the results of the behavior collected through Big Data, we can better understand how citizens are using city parks. This study found that the behavior associated with static behavior in both parks had a great impact on other behaviors.

A Study on the Application of the Smartphone Hiking Apps for Analyzing the User Characteristics in Forest Recreation Area: Focusing on Daegwallyoung Area (산림휴양공간 이용특성 분석을 위한 국내 스마트폰 산행앱(APP)의 적용성 및 활용방안 연구: 대관령 선자령 일대를 중심으로)

  • Jang, Youn-Sun;Yoo, Rhee-Hwa;Lee, Jeong-Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.3
    • /
    • pp.382-391
    • /
    • 2019
  • This study was conducted to verify whether smartphone hiking apps, which generate social network data including location information, are useful tools for analyzing the use characteristics of a forest recreation area. For this purpose, the study identified the functions and service characteristics of smartphone hiking apps. Also, the use characteristics of the area of Daegwallyoung were analyzed, compared with the results of the field survey, and the applicability of hiking apps was reviewed. As a result, the service types of hiking apps were analyzed in terms of three categories: "information offering," "hiking record," and "information sharing." This study focused on an app that is one of the "hiking record" types with the greatest number of users. Analysis of the data from hiking apps and a field survey in the Daegwallyoung area showed that both hiking apps and the field survey can be used to identify the movement patterns, but hiking apps based on a global positioning system (GPS) are more efficient and objective tools for understanding the use patterns in a forest recreation area, as well as for extracting user-generated photos. Second, although it is advantageous to analyze the patterns objectively through the walking-speed data generated, field surveys and observation are needed as complements for understanding the types of activities in each space. The hiking apps are based on cellphone use and are specific to "hiking" use, so user bias can limit the usefulness of the data. It is significant that this research shows the applicability of hiking apps for analyzing the use patterns of forest recreation areas through the location-based social network data of app users who record their hiking information voluntarily.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.