• Title/Summary/Keyword: Wakeup

Search Result 45, Processing Time 0.024 seconds

QoS-aware Fast Wakeup and Connection Mechanism on Broadcasting Convergence Network (방송통신 융합망에서 QoS 향상을 위한 Fast Wakeup and Connection 기술)

  • Kim, Moon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.402-412
    • /
    • 2017
  • The convergence of broadcasting and telecommunication technologies is a key issue of the ubiquitous networks. So this paper offers the convergence of integrated telecommunication networks and broadcasting system, Advanced Terrestrial Digital Multimedia Broadcasting (AT-DMB), and the interconnection of them via the Media Independent Information Server/Service (MIIS). Then, this paper proposes the fast wakeup and connection mechanism with concepts for improving QoS and energy efficiency simultaneously. In the proposed convergence network, our mechanism places the key on the minimization of both the incoming service delay destined to a turned-off interface by using the broadcasting network and the additional energy consumption. This paper further evaluates the performance of proposed mechanism through the numerical and experimental analysis and has confirmed the decrease of both service delay and energy consumption.

A Power-Efficient MAC Protocol for WBAN

  • Kwak, Kyung-Sup;Ullah, Sana;Kwak, Dae-Han;Lee, Cheol-Hyo;Lee, Hyung-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.131-140
    • /
    • 2009
  • A key challenge for Wireless Body Area Network (WBAN) is to maximize the network lifetime with power-efficient and flexible duty cycling techniques on energy-constraint sensor nodes. In this paper, we propose a novel power-efficient MAC protocol for WBAN that accommodates normal, emergency, and on-demand traffic in a reliable manner. This protocol supports two wakeup mechanisms, a traffic-based wakeup mechanism, which accommodates normal traffic by exploiting the node's traffic patterns, and a wakeup radio mechanism, which accommodates emergency and on-demand traffic by using a wakeup radio. It can be seen that the proposed protocol not only improves the lifetime of WBAN but also provides a reliable method to handle sporadic events. Simulation results show that the proposed protocol outperforms WiseMAC in terms of low-power consumption and delay.

  • PDF

Traffic Adaptive Wakeup Control Mechanism in Wireless Sensor Networks (무선 센서 네트워크에서 트래픽 적응적인 wakeup 제어 메커니즘)

  • Kim, Hye-Yun;Kim, Seong-Cheol;Jeon, Jun-Heon;Kim, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.6
    • /
    • pp.681-686
    • /
    • 2014
  • In this paper, we propose a traffic adaptive mechanism that controls the receiver's wakeup periods based on the generated traffic amounts. The proposed control mechanism is designed for military, wild animal monitoring, and forest fire surveillance applications. In these environments, a low-rate data transmission is usually required between sensor nodes. However, continuous data is generated when events occur. Therefore, legacy mechanisms are ineffective for these applications. Our control mechanism showed a better performance in energy efficiency compared to the RI-MAC owing to the elimination of the sender node's idle listening.

QoS-guaranteed Fast Wakeup and Connection Mechanism in Multi-Interface Communication Systems

  • Kim, Moon;Park, Ki-Sik;Kim, Wan-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.682-686
    • /
    • 2010
  • In this paper, we propose the fast wakeup and connection mechanisms for various energy saving schemes in order to improve QoS. First, we offer the interconnection of heterogeneous access networks via the Media Independent Information Server/Service (MIIS). Then, we propose the fast wakeup and connection mechanism for multi-interface communication systems. The proposed novel mechanism focuses on the fast provision of incoming service destined to the interface currently in energy saving mode by using MIIS-assisted interconnection. We further evaluate the performance of proposed mechanism through the numerical and experimental analysis.

A Joint Wakeup Scheduling and MAC Protocol for Energy Efficient Data Forwarding in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 데이터 전송을 위한 스케줄링/ MAC 통합 프로토콜)

  • Cho, Jae-Kyu;Kwon, Tae-Kyoung;Choi, Yang-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4B
    • /
    • pp.207-214
    • /
    • 2008
  • Under future internet environment, wireless sensor networks will be used in a wide range of applications. A major problem for designing sensor protocol is developing the most energy efficient technique to monitor an area of interest for a long time since sensors have some constraints such as small and a limited energy level. In addition, data latency is often a critical issue since sensory data is transmitted via multi hop fashion and need to be delivered timely for taking an appropriate action. Our motivation for designing a data forwarding protocol is to minimize energy consumption while keeping data latency bound in wireless sensor networks. In this paper, we propose a data forwarding protocol that consists of wakeup scheduling and MAC protocols, the latter of which is designed to achieve load balancing. Simulation results show that the proposed framework provides more energy-efficient delivery than other protocol.

Dynamic Adjustment of Ad hoc Traffic Indication Map(ATIM) window to save Power in IEEE 802.11 DCF

  • Nam, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.343-347
    • /
    • 2008
  • Wakeup schemes that turn off sensors' radio when communication is not necessary have great potential in energy saving. At the start of each beacon interval in the IEEE 802.11 power saving mode specified for DCF, each node periodically wakes up for duration called the ATIM Window. However, in the power saving mechanism specified in IEEE 802.11, all nodes use the same ATIM window size. Since the ATIM window size critically affects throughput and energy consumption, a fixed ATIM window does not perform well in all situations. This paper proposes an adaptive mechanism to dynamically choose an ATIM window size according to network condition. Simulation results show that the proposed scheme outperforms the IEEE 802.11 power saving mechanism in terms of the amount of power consumed and the packet delivery ratio.

Energy Efficient and Multimedia Traffic Friendly MAC Protocol in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적이고 멀티미디어 트래픽에 적합한 MAC 프로토콜)

  • Kim, Seong Cheol;Kim, Hye Yun;Kim, Joong Jae
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1460-1465
    • /
    • 2016
  • In this paper, we propose an energy efficient and multimedia traffic friendly MAC protocol (EEMF-MAC) that controls sender's wakeup period based on the data packet's transmission urgency and the receiver's wakeup periods based on the received data packet traffic loads. The protocol is useful for applications such as object tracking, real time data gathering, in which priority-based packet transmission is required. The basic idea of EEMF-MAC is that it uses the priority concept with transmission urgency of sender's data packet to reduce the transmission delay of the urgent data and it also uses duty cycling technique in order to achieve energy efficiency. EEMF-MAC showed a better performance in energy efficiency and packet transmission delay compared to existing protocols, RI-MAC and EE-RI-MAC.

Data Predicted Wakeup Based Duty Cycle MAC for Wireless Sensor Networks

  • Monowar, Muhammad Mostafa;Rahman, Md. Obaidur;Hong, Choong Seon;Cho, Jin Woong;Lee, Hyun Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.527-528
    • /
    • 2009
  • Presuming energy as a crucial resource, several duty cycle based MAC protocol have been proposed for wireless sensor network. However, these protocols have long latency problem for paying more attention on energy efficiency. In this paper, we propose Data Predicted Wakeup Based Duty Cycle MAC (DPW-MAC) for Wireless Sensor Networks for delay sensitive periodic applications in which timely delivery of data is a major concern with the maintenance of duty cycle.

A Traffic Aware Demand-Wakeup MAC(TADW-MAC) Protocol for Wireless Sensor Networks (무선 센서 네트워크에서 트래픽에 적응적인 Demand-Wakeup MAC 프로토콜)

  • Kim, Hye-Yun;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.180-186
    • /
    • 2017
  • In this paper we propose a traffic aware Demand Wakeup MAC(TADW-MAC) protocol, in which low data delay and high throughput can be achieved, for wireless sensor networks. With the TADW-MAC protocol, the problem of the DW-MAC protocol, which schedules only one packet to deliver during the Sleep period in a multi-hop transmission is resolved. DW-MAC is not adequate for the applications such as object tracking and fire detection, in which busty data should be transmitted in a limited time when an event occurs [6-8]. When an event occurs, duty cycle can be adjusted in the TADW-MAC protocol to get less energy consumption and low latency. The duty cycle mechanism has been widely used to save energy consumption of sensor node due to idle listening in wireless sensor networks. But additional delay in packet transmission may be increased in the mechanism. Our simulation results show that TADW-MAC outperforms RMAC and DW-MAC in terms of energy efficiency while achieving low latency.

Cluster-based Continuous Object Prediction Algorithm for Energy Efficiency in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 위한 클러스터 기반의 연속 객체 예측 기법)

  • Lee, Wan-Seop;Hong, Hyung-Seop;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8C
    • /
    • pp.489-496
    • /
    • 2011
  • Energy efficiency in wireless sensor networks is a principal issue to prolong applications to track the movement of the large-scale phenomena. It is a selective wakeup approach that is an effective way to save energy in the networks. However, most previous studies with the selective wakeup scheme are concentrated on individual objects such as intruders and tanks, and thus cannot be applied for tracking continuous objects such as wild fire and poison gas. This is because the continuous object is pretty flexible and volatile due to its sensitiveness to surrounding circumferences so that movable area cannot be estimated by the just spatiotemporal mechanism. Therefore, we propose a cluster-based algorithm for applying the efficient and more accurate technique to the continuous object tracking in enough dense sensor networks. Proposed algorithm wakes up the sensors in unit cluster where target objects may be diffused or shrunken. Moreover, our scheme is asynchronous because it does not need to calculate the next area at the same time.