• Title/Summary/Keyword: Wakes

Search Result 161, Processing Time 0.025 seconds

Ship Detection Based on KOMPSAT-5 SLC Image and AIS Data (KOMPSAT-5 SLC 영상과 AIS 데이터에 기반한 선박탐지)

  • Kim, Donghan;Lee, Yoon-Kyung;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.365-377
    • /
    • 2020
  • Continuous monitoring and immediate response is essential to protect the national maritime territory and maritime resources from the activities of illegal ships. Synthetic Aperture Radar (SAR) images with a wide range of images are effective for maritime surveillance asthe weather and day-night conditions rarely affect to image acquisition. However, an effective ship detection is not easy due to the huge data size of SAR images and various characteristics such as the speckle noise. In this study, the Human Visual Attention System (HVAS) algorithm was applied to KOMPSAT-5 to extract the initial targets, and the SAR-Split algorithm depending on the imaging modes was used to remove false alarms. The detected targets were finally selected by the Constant False Alarm Rate (CFAR) algorithm and matched with the ship's Automatic Identification System (AIS) information. Overall, the detected targets were well matched with AIS data, but some false alarms by ship wakes were observed. The detection rate was about 80% in ES mode and about 64% in ST mode. It is expected that the developed ship detection algorithm will contribute to the construction of a wide area maritime surveillance network.

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.

Prediction of Performance of Waterjet Propulsors by Surface Panel Method (패널법에 의한 물 분사 추진장치의 성능해석)

  • Moon, II-Sung;Lee, Chang-Sup;Song, In-Haeng;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.31-41
    • /
    • 1997
  • This paper describes a potential-based panel method formulated for the prediction of the steady performance of a waterjet propulsor. The method employs normal dipoles and sources distributed on the solid surfaces such as the impeller/stator blades, hub and duct, and normal dipoles in the shed wakes trailing the impeller and stator to represent the potential flow around the waterjet propulsor. To define a closed boundary surface, the inlet and outlet open boundary surfaces are introduced where the sources and dipoles are distributed. The kinematic boundary condition on the solid boundary surface is satisfied by requiring that the normal component of the total velocity should vanish. On the inlet surface, the total inflow flux into the duct is specified, and on the outlet surface the conservation of mass principle is applied to evaluate the source strength. The solid surfaces are discretized into a set of quadrilateral panel elements and the strengths of sources and dipoles are assumed constant at each panel. Applying this approximation to the boundary conditions leads to a set of simultaneous equations. Systematic numerical tests show that the present numerical method is fast and stable. In order to validate the present method, sample computations are carried out first for the case of a conventional axial flow fan which has a similar geometry as the waterjet propulsor, and then for the case of a waterjet propulsor on which experiments are carried out at KRISO(Korea Research Institute of Ships and Ocean Engineering).

  • PDF

Operational Ship Monitoring Based on Integrated Analysis of KOMPSAT-5 SAR and AIS Data (Kompsat-5 SAR와 AIS 자료 통합분석 기반 운영레벨 선박탐지 모니터링)

  • Kim, Sang-wan;Kim, Dong-Han;Lee, Yoon-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.327-338
    • /
    • 2018
  • The possibility of ship detection monitoring at operational level using KOMPSAT-5 Synthetic Aperture Radar (SAR) and Automatic Identification System (AIS) data is investigated. For the analysis, the KOMPSAT-5 SLC images, which are collected from the west coast of Shinjin port and the northern coast of Jeju port are used along with portable AIS data from near the coast. The ship detection algorithm based on HVAS (Human Visual Attention System) was applied, which has significant advantages in terms of detection speed and accuracy compared to the commonly used CFAR (Constant False Alarm Rate). As a result of the integrated analysis, the ship detection from KOMPSAT-5 and AIS were generally consistent except for small vessels. Some ships detected in KOMPSAT-5 but not in AIS are due to the data absence from AIS, while it is clearly visible in KOMPSAT-5. Meanwhile, SAR imagery also has some false alarms due to ship wakes, ghost effect, and DEM error (or satellite orbit error) during object masking in land. Improving the developed ship detection algorithm and collecting reliable AIS data will contribute for building wide integrated surveillance system of marine territory at operational level.

Characteristics of Tidal Current and Tidal Residual Current in the Archipelago Around Aphae Island in the Southwestern Waters of Korea (한국 서남해 압해도 주변 다도해역의 조류 및 조석잔차류 분포)

  • Choo, Hyo-Sang;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.179-187
    • /
    • 2018
  • In order to understand the flow of currents around Aphae Island and the surrounding Archipelago, the numerical model experiments on tidal currents and tide-induced residual currents were carried out. Dominant semidiurnal tidal currents have a reversing form and flow along the narrow channels of the archipelago. During periods of flood, currents flow from the west of Hwawon Peninsula to the archipelago to the northwest together with the currents flowing from the channels at Palgeum Island to Amtae Island and Amtae Island to Jeung Island. Ebb currents flow from the northwest archipelago to the channel of Amtae Island and Jeung Island as well as Amtae Island to Palgeum Island, further flowing south between Palgeum Island and Hwawon Peninsula. Flood currents are separated from east and west at the southern coast of Aphae Island, but flow south from both the west and east of Aphae Island to the channel found between Palgeum Island and Hwawon Peninsula at ebb. Flow speed is high between Amtae Island and Aphae Island where the flows meet and join. Lee wakes or topographical eddies are formed around the islands due to the high speed of the currents flowing along the narrow channel in the archipelago, manifesting as a tide-induced residual current. A weak cyclonic wake and anti-cyclonic eddy both exist at the west and northwestern coast of Aphae Island individually. The speed of the tide-induced residual current become slow on account of the wide littoral zone at exists around Aphae Island.

Numerical and Experimental Investigation on the Interaction of Subsurface Vortical Flows with a Free Surface (수면하 보오텍스 유동과 자유표면과의 상호 작용에 관한 연구)

  • Mu-Seok Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.76-85
    • /
    • 1993
  • In order to predict the free surface signature of turbulent ship wakes two things are essential; a basic understanding of the mechanism of turbulent vortical flow/free surface interactions and a mathematical model to accurately predict the signature. The goal of the study described here is both to supplement experimental work to obtain basic understanding, as well as to condense this understanding in a model(or models) that captures the essential phenomena and thus allows predictions. To do so we followed two main paths guided by experimental observations. One is full simulations of the flow using the clavier-Stokes equations. The other is a vortex modeling, where the vortical structures of the flows are approximated by idealized structures, an the interaction assumed to be essentially inviscid. These approaches complement each other. Full simulations are only applicable to small scale phenomena, where the system is simple, and the Reynolds number is low. The vortex modeling, on the other hand, cannot represent essentially viscous aspects of the problem such as the effect of contamination gradient. Obviously, the modeling is what may eventually lead to a prediction method; the full simulations-too limited to mimic all but the simplest circumstances-are to aid and support the construction of realistic models. We address two-dimensional aspects of the vortex/free surface interaction first. Secondly we obtain some basic understanding of the interaction process through an experiment and then talk about several three-dimensional problems hoping to develop a successful prediction model.

  • PDF

Control of the flow past a sphere in a turbulent boundary layer using O-ring

  • Okbaz, Abdulkerim;Ozgoren, Muammer;Canpolat, Cetin;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • This research work presents an experimental study's outcomes to reveal the impact of an O-ring on the flow control over a sphere placed in a turbulent boundary layer. The investigation is performed quantitatively and qualitatively using particle image velocimetry (PIV) and dye visualization. The sphere model having a diamater of 42.5 mm is located in a turbulent boundary layer flow over a smooth plate for gap ratios of 0≤G/D≤1.5 at Reynolds number of 5 × 103. Flow characteristics, including patterns of instantaneous vorticity, streaklines, time-averaged streamlines, velocity vectors, velocity fluctuations, Reynolds stress correlations, and turbulence kinetic energy (), are compared and discussed for a naked sphere and spheres having O-rings. The boundary layer velocity gradient and proximity of the sphere to the flat plate profoundly influence the flow dynamics. At proximity ratios of G/D=0.1 and 0.25, a wall jet is formed between lower side of the sphere and flat plate, and velocity fluctuations increase in regions close to the wall. At G/D=0.25, the jet flow also induces local flow separations on the flat plate. At higher proximity ratios, the velocity gradient of the boundary layer causes asymmetries in the mean flow characteristics and turbulence values in the wake region. It is observed that the O-ring with various placement angles (𝜃) on the sphere has a considerable alteration in the flow structure and turbulence statistics on the wake. At lower placement angles, where the O-ring is closer to the forward stagnation point of the sphere, the flow control performance of the O-ring is limited; however, its impact on the flow separation becomes pronounced as it is moved away from the forward stagnation point. At G/D=1.50 for O-ring diameters of 4.7 (2 mm) and 7 (3 mm) percent of the sphere diameter, the -ring exhibits remarkable flow control at 𝜃=50° and 𝜃=55° before laminar flow separation occurrence on the sphere surface, respectively. This conclusion is yielded from narrowed wakes and reductions in turbulence statistics compared to the naked sphere model. The O-ring with a diameter of 3 mm and placement angle of 50° exhibits the most effective flow control. It decreases, in sequence, streamwise velocity fluctuations and length of wake recovery region by 45% and 40%, respectively, which can be evaluated as source of decrement in drag force.

A Ship-Wake Joint Detection Using Sentinel-2 Imagery

  • Woojin, Jeon;Donghyun, Jin;Noh-hun, Seong;Daeseong, Jung;Suyoung, Sim;Jongho, Woo;Yugyeong, Byeon;Nayeon, Kim;Kyung-Soo, Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.77-86
    • /
    • 2023
  • Ship detection is widely used in areas such as maritime security, maritime traffic, fisheries management, illegal fishing, and border control, and ship detection is important for rapid response and damage minimization as ship accident rates increase due to recent increases in international maritime traffic. Currently, according to a number of global and national regulations, ships must be equipped with automatic identification system (AIS), which provide information such as the location and speed of the ship periodically at regular intervals. However, most small vessels (less than 300 tons) are not obligated to install the transponder and may not be transmitted intentionally or accidentally. There is even a case of misuse of the ship'slocation information. Therefore, in this study, ship detection was performed using high-resolution optical satellite images that can periodically remotely detect a wide range and detectsmallships. However, optical images can cause false-alarm due to noise on the surface of the sea, such as waves, or factors indicating ship-like brightness, such as clouds and wakes. So, it is important to remove these factors to improve the accuracy of ship detection. In this study, false alarm wasreduced, and the accuracy ofship detection wasimproved by removing wake.As a ship detection method, ship detection was performed using machine learning-based random forest (RF), and convolutional neural network (CNN) techniquesthat have been widely used in object detection fieldsrecently, and ship detection results by the model were compared and analyzed. In addition, in this study, the results of RF and CNN were combined to improve the phenomenon of ship disconnection and the phenomenon of small detection. The ship detection results of thisstudy are significant in that they improved the limitations of each model while maintaining accuracy. In addition, if satellite images with improved spatial resolution are utilized in the future, it is expected that ship and wake simultaneous detection with higher accuracy will be performed.

Computational Simulation of Coaxial eVTOL Aircraft in Ground Effect (동축 반전 전기동력 수직이착륙기의 지면 효과에 대한 전산해석)

  • Yang, Jin-Yong;Lee, Hyeok-Jin;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.599-608
    • /
    • 2022
  • Urban air mobility (UAM) equipped with rotor system is subject to ground effect at vertiport during takeoff and landing. The aerodynamic performance of the aircraft in ground effect should be analyzed for the safe operation. In this study, The ground effects on the aerodynamic performance and wake structure of the quadcopter electric vertical takeoff and landing (eVTOL) configuration equipped with coaxial counter-rotating propellers were investigated by using the lattice Boltzmann method (LBM). The influence of the ground effect was observed differently in the upper and lower propellers of the coaxial counter-rotating propeller system. There was no significant change in the aerodynamic performance of the upper propeller even if the propeller height above the ground was changed, whereas the averaged thrust and torque of the lower propeller increased significantly as propeller height decreased. In addition, the amplitude of the thrust fluctuation tended to increase as the propeller height decreased. The propeller wake was not sufficiently propagated downstream and was diffused along the ground due to the outwash flow developed by the ground effect. The impingement of the rotor wakes on the ground and a fountain vortex structure were observed.

Numerical modeling of secondary flow behavior in a meandering channel with submerged vanes (잠긴수제가 설치된 만곡수로에서의 이차류 거동 수치모의)

  • Lee, Jung Seop;Park, Sang Deog;Choi, Cheol Hee;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.743-752
    • /
    • 2019
  • The flow in the meandering channel is characterized by the spiral motion of secondary currents that typically cause the erosion along the outer bank. Hydraulic structures, such as spur dike and groyne, are commonly installed on the channel bottom near the outer bank to mitigate the strength of secondary currents. This study is to investigate the effects of submerged vanes installed in a $90^{\circ}$ meandering channel on the development of secondary currents through three-dimensional numerical modeling using the hybrid RANS/LES method for turbulence and the volume of fluid method, based on OpenFOAM open source toolbox, for capturing the free surface at the Froude number of 0.43. We employ the second-order-accurate finite volume methods in the space and time for the numerical modeling and compare numerical results with experimental measurements for evaluating the numerical predictions. Numerical results show that the present simulations well reproduce the experimental measurements, in terms of the time-averaged streamwise velocity and secondary velocity vector fields in the bend with submerged vanes. The computed flow fields reveal that the streamwise velocity near the bed along the outer bank at the end section of bend dramatically decrease by one third of mean velocity after the installation of vanes, which support that submerged vanes mitigate the strength of primary secondary flow and are helpful for the channel stability along the outer bank. The flow between the top of vanes and the free surface accelerates and the maximum velocity of free surface flow near the flow impingement along the outer bank increases about 20% due to the installation of submerged vanes. Numerical solutions show the formations of the horseshoe vortices at the front of vanes and the lee wakes behind the vanes, which are responsible for strong local scour around vanes. Additional study on the shapes and arrangement of vanes is required for mitigate the local scour.