• Title/Summary/Keyword: Wakes

Search Result 162, Processing Time 0.02 seconds

Receiver-Initiated MAC Protocol Using an Intermediate Node to Improve Performance (성능 향상을 위해 중간 노드를 이용한 개선된 수신자 주도의 MAC 프로토콜)

  • Kong, Joon-Ik;Lee, Jaeho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1423-1430
    • /
    • 2016
  • The MAC protocols, which are classified into synchronous and asynchronous MAC protocol in the wireless sensor network, have actively studied. Especially, the asynchronous MAC protocol needs to research on the algorithm synchronizing between nodes, since each node independently operates in its own duty cycle. Typically, Receiver-Initiated MAC protocol is the algorithm synchronizing particular nodes by using beacon immediately transmitted by each node when it wakes up. However, the sender consumes unnecessary energy because it blankly waits until receiving the receiver's beacon, even if it does not know when the receiver's beacon is transmitted. In this paper, we propose the MAC protocol which can improve the performance by selecting an optimal node between a sender and a receiver to overcome the disadvantages. The simulation results show that the proposed algorithm improves energy efficiency and decreases average delay time than the conventional algorithm.

Drag Coefficient Estimation of Pile Type Structures by Numerical Water Basin Experiments (수조 수치실험에 의한 말뚝구조물의 항력계수 산정)

  • Park, Il-Heum;Lee, Geun-Hyo;Cho, Young-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • A possibility of the drag coefficient estimation in numerical water basins was discussed where the numerical solution were calculated by the 3-dimensional hydro-dynamical model (FLOW-$3D^{(R)}$) with the RNG $k-{\varepsilon}$ turbulence model. On the known cases of the drag coefficients for a rectangle, the numerical drag coefficients got $1.34{\sim}1.52$ and the wind tunnel values were $1.3{\sim}1.5$. For a cylinder, the numerical values were calculated as $0.75{\sim}0.78$ in the range of 0.5

Flapping Propulsion of Oscillating Flat Plates (진동하는 평판들에서의 플래핑 추진)

  • Ahn, June-Sung;Han, Cheol-Heui;Kim, Chang-Hee;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.118-126
    • /
    • 2004
  • The propulsive characteristics of oscillating flat plates are investigated using a discrete vortex method. The plates and their wakes are represented by discrete point vortices. To analyze the closely coupled aerodynamic interference between the plates, a vortex core model and a vortex core addition scheme are combined. A calculated wake shape for a flat plate in heaving oscillation is compared with flow visualization. The effect of wake shapes on the propulsive characteristics of the plates in pitching oscillation is investigated. The propulsive characteristics of oscillating plates with three cases (1. one is stationary and another is oscillating, 2. both oscillating in phase, 3. both oscillating out of phase) are calculated. The plates oscillating out of phase showed the largest thrust force among the three cases.

On the Viscous Flow Around Breaking Waves Generated by a Submerged Cylinder(Part 1 : Wave Pattern and Surface Pressure) (몰수실린더에 의하여 생성되는 쇄파주위 점성유동의 고찰 (제1부 : 파형 및 압력분포))

  • B.S. Hyun;Y.H. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.82-90
    • /
    • 2000
  • An experimental study has been carried out at circulating water channel to investigate the non-breaking and breaking waves generated by a submerged circular cylinder steadily moving under the free surface. Free surface profiles and pressure distributions on cylinder surface were measured at various submerged depths of cylinder. They were complemented by the measurements of velocities, head losses and turbulence intensities in the wakes of body and "breaker". Part 1 of this three-part paper describes the experimental arrangement and the patterns of wave profile and pressure distribution at various depths of submergence. These databank contributions are of special interest in traditional ship hydrodynamics. In Part 2, special focuses are made to elucidate the viscous and turbulent aspects of flow field. Finally Part 3 will deal with the visualization of instantaneous vortical flow to study the mutual interaction between vorticies shedded from the free-surface and the cylinder using a Particle Image Velocimetry.

  • PDF

Flow Visualization and Unstructured Grid Computation of Flow over a High-Speed Projectile (고속탄자 유동의 가시화 실험 및 비정렬격자 계산)

  • 이상길;최서원;강준구;임홍규;백영호;김두연;강호철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.12-20
    • /
    • 1998
  • Exter ballistics of a typical high-speed projectile is studied through a flow-visualization experiment and an unstructured grid Navier-Srokes computation. Experiment produced a schlieren photograph that adequately shows the characteristic features of this complex flow, namely two kinds of oblique cone shocks and turbulent wake developing into the downstream. A hybrid scheme of finite volume-element method is used to simulate the compressible Reynolds-Averaged Navier-Stok- es solution on unstructured grids. Osher's approximate Riemann solver is used to discretize the cinvection term. Higher-order spatial accuracy is obtained by MUSCL extension and van Albada ty- pe flux limiter is used to stabilize the numerical oscillation near the solution discontinuity. Accurate Gakerkin method is used to discretize the viscous term. Explict fourth-order Runge-Kutta method is used for the time-stepping, which simplifies the application of MUSCL extension. A two-layer k-$\varepsilon$ turbulence model is used to simulate the turbulent wakes accurately. Axisymmetric folw and two-dimensional flow with an angle of attack have been computed. Grid-dependency is also checked by carrying out the computation with doubled meshes. 2-D calculation shows that effect of angle of attack on the flow field is negligible. Axi-symmetric results of the computation agrees well with the flow visualization. Primary oblique shock is represented within 2-3 meshes in numerical results, and the varicose mode of the vortex shedding is clearly captured in the turbulent wake region.

  • PDF

Dynamic ATIM Power Saving Mechanism(DAPSM) in 802.11 Ad-Hoc Networks (802.11 Ad-Hoc 네트웍에서 Power Save Mechanism을 개선한 DAPSM 알고리즘)

  • Park, Jae-Hyun;Lee, Jang-Su;Kim, Sung-Chun
    • The KIPS Transactions:PartC
    • /
    • v.14C no.6
    • /
    • pp.475-480
    • /
    • 2007
  • Recently, wireless networking devices that depend on the limited Battery and power-saving of wireless hosts became important issue. Batteries can provide a finite amount of energy, therefore, to increase battery lifetime, it is important to design techniques to reduce energy consumption by wireless hosts. This paper improved power saying mechanism in Distributed Coordination Function(DCF) of IEEE 802.11. In the IEEE 802.11 power saving mechanism specified for DCF, time is divided into so-called beacon intervals. At the start of each beacon interval, each node in the power saving mode periodically wakes up during duration called the ATIM Window. The nodes are required to be synchronized to ensure that all nodes wake up at the same time. During the ATIM window, the nodes exchange control packets to determine whether they need to stay awake for the rest of the beacon interval. The size of the ATIM window has considerably affected power-saving. This paper can provide more power-saving than IEEE 802.11 power saving mode because ATIM window size is efficiently increased or decreased.

Static Aeroelastic Analysis of Hingeless Rotor System in Hover Using Free-Wake Method (자유후류기법을 이용한 무힌지 로터 시스템의 정지비행시 정적 공탄성 해석)

  • Yoo, Seung-Jae;Lim, In-Gyu;Lee, In;Kim, Do-Hyung;Kim, Doeg-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • The static aeroelastic analysis of composite hingeless rotor blades in hover was performed using free-wake method. Large deflection beam theory was applied to analyze blade motions as a one-dimension beam. Anisotropic beam theory was applied to perform a cross-sectional analysis for composite rotor blades. Aerodynamic loads were calculated through a three-dimensional aerodynamic model which is based on the unsteady vortex lattice method. The wake geometry in hover was described using a time-marching free-wake method. Numerical results of the steady-state deflections for the composite hingeless rotor blades were presented and compared with those results based on two-dimensional quasi-steady strip theory and prescribed wake method. It was shown that wakes affect the steady-state deflections.

Vortex induced vibration and flutter instability of two parallel cable-stayed bridges

  • Junruang, Jirawat;Boonyapinyo, Virote
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.633-648
    • /
    • 2020
  • The objective of this work was to investigate the interference effects of two-parallel bridge decks on aerodynamic coefficients, vortex-induced vibration, flutter instability and flutter derivatives. The two bridges have significant difference in cross-sections, dynamic properties, and flutter speeds of each isolate bridge. The aerodynamic static tests and aeroelastic tests were performed in TU-AIT boundary layer wind tunnel in Thammasat University (Thailand) with sectional models in a 1:90 scale. Three configuration cases, including the new bridge stand-alone (case 1), the upstream new bridge and downstream existing bridge (case 2), and the downstream new bridge and the upstream existing bridge (case 3), were selected in this study. The covariance-driven stochastic subspace identification technique (SSI-COV) was applied to identify aerodynamic parameters (i.e., natural frequency, structural damping and state space matrix) of the decks. The results showed that, interference effects of two bridges decks on aerodynamic coefficients result in the slightly reduction of the drag coefficient of case 2 and 3 when compared with case 1. The two parallel configurations of the bridge result in vortex-induced vibrations (VIV) and significantly lower the flutter speed compared with the new bridge alone. The huge torsional motion from upstream new bridge (case 2) generated turbulent wakes flow and resulted in vertical aerodynamic damping H1* of existing bridge becomes zero at wind speed of 72.01 m/s. In this case, the downstream existing bridge was subjected to galloping oscillation induced by the turbulent wake of upstream new bridge. The new bridge also results in significant reduction of the flutter speed of existing bridge from the 128.29 m/s flutter speed of the isolated existing bridge to the 75.35 m/s flutter speed of downstream existing bridge.

A Solution for Reducing Transmission Latency through Distributed Duty Cycling in Wireless Sensor Networks (무선 센서 네트워크에서 수신구간 분산 배치를 통한 전송지연 감소 방안)

  • Kim, Jun-Seok;Kwon, Young-Goo
    • 한국ITS학회:학술대회논문집
    • /
    • v.2007 no.10
    • /
    • pp.225-229
    • /
    • 2007
  • Recently, wireless sensor networks are deployed in various applications range from simple environment monitoring systems to complex systems, which generate large amount of information, like motion monitoring, military, and telematics systems. Although wireless sensor network nodes are operated with low-power 8bit processor to execute simple tasks like environment monitoring, the nodes in these complex systems have to execute more difficult tasks. Generally, MAC protocols for wireless sensor networks attempt to reduce the energy consumption using duty cycling mechanism which means the nodes periodically sleep and wake. However, in the duty cycling mechanism. a node should wait until the target node wakes and the sleep latency increases as the number of hops increases. This sleep latency can be serious problem in complex and sensitive systems which require high speed data transfer like military, wing of airplane, and telematics. In this paper, we propose a solution for reducing transmission latency through distributed duty cycling (DDC) in wireless sensor networks. The proposed algorithm is evaluated with real-deployment experiments using CC2420DBK and the experiment results show that the DDC algorithm reduces the transmission latency significantly and reduces also the energy consumption.

  • PDF

Cluster-based Continuous Object Prediction Algorithm for Energy Efficiency in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 위한 클러스터 기반의 연속 객체 예측 기법)

  • Lee, Wan-Seop;Hong, Hyung-Seop;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8C
    • /
    • pp.489-496
    • /
    • 2011
  • Energy efficiency in wireless sensor networks is a principal issue to prolong applications to track the movement of the large-scale phenomena. It is a selective wakeup approach that is an effective way to save energy in the networks. However, most previous studies with the selective wakeup scheme are concentrated on individual objects such as intruders and tanks, and thus cannot be applied for tracking continuous objects such as wild fire and poison gas. This is because the continuous object is pretty flexible and volatile due to its sensitiveness to surrounding circumferences so that movable area cannot be estimated by the just spatiotemporal mechanism. Therefore, we propose a cluster-based algorithm for applying the efficient and more accurate technique to the continuous object tracking in enough dense sensor networks. Proposed algorithm wakes up the sensors in unit cluster where target objects may be diffused or shrunken. Moreover, our scheme is asynchronous because it does not need to calculate the next area at the same time.