• 제목/요약/키워드: Wake characteristics

검색결과 523건 처리시간 0.029초

저전력 무선접속에서 비콘 수신을 위한 타이머의 동적 제어 (Dynamic Control of Timer for Receiving Beacon in Low Power Wireless Interface)

  • 송명렬
    • 한국통신학회논문지
    • /
    • 제32권12A호
    • /
    • pp.1303-1310
    • /
    • 2007
  • IEEE 802.11b 무선 네트워크에서 스테이션들이 저전력 모드로 동작할 때, 스테이션들은 액세스 포인트 (AP)가 주기적으로 전송하는 비콘(beacon)을 수신하여 동기를 맞춘다. 예정된 시각에 무선채널이 사용 중인 경우 AP에서 비콘 전송이 지연되므로, 스테이션은 비콘을 수신하기 위해 충분한 시간 동안 깨어있어야 한다. 이 논문에서는 수신된 비콘의 지연시간을 측정하여 다음 비콘을 수신하기 위해 스테이션이 깨어있어야 할 시간을 결정하는 방법을 제안한다. AP에서 비콘의 전송지연에 대해 분석하였다. 제안된 방법에 대해 모의실험이 수행되었고 분석을 통해 제안된 방법의 특성을 설명하였다. 스테이션이 깨어있는 시간으로 측정된 결과는 에너지 소모가 개선될 수 있음을 보여준다.

잡음 환경에 강인한 기동어 검출을 위한 삼중항 손실 기반 도메인 적대적 훈련 (Triplet loss based domain adversarial training for robust wake-up word detection in noisy environments)

  • 임형준;정명훈;김회린
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.468-475
    • /
    • 2020
  • 단어의 특성을 잘 표현하는 음성 단어 임베딩은 기동어 인식에서 중요한 역할을 한다. 하지만 기동어 인식이 수행되는 환경에서 필연적으로 발생하는 다양한 종류의 잡음으로 인해 음성 단어 임베딩의 표현 능력이 손상될 수 있으며, 인식 성능의 저하를 초래할 수 있다. 본 논문에서는 음성 단어 임베딩에 영향을 줄 수 있는 환경적인 요인을 완화시키는 삼중항 손실 기반의 도메인 적대적 훈련 방식을 제안한다. 잡음 환경에서의 기동어 검출 실험을 통해 제안하는 방식이 기존의 도메인 적대적 훈련 방식을 효과적으로 개선하는 모습을 확인할 수 있었고, 잡음 환경에서의 기동어 검출을 위해 기존에 제안된 다른 방법과의 결합을 통해 제안하는 방식의 확장성을 확인할 수 있었다.

회전하는 선박 프로펠러 전방 유입류에 대한 PIV 속도장 해석 (PIV Velocity Field Analysis of Inflow ahead of a Rotating Marine Propeller)

  • 이상준;백부근
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.30-37
    • /
    • 2004
  • Flow characteristics of the inflow ahead of a rotating propeller attached to a container ship model were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases. The mean velocity fields show the acceleration of inflow due to the rotating propeller and the velocity deficit in the near-wake region. The axial velocity distribution of inflow in the upper plane of propeller is quite different from that in the lower plane due to the thick hull boundary layer. The propeller inflow also shows asymmetric axial velocity distribution in the port and starboard side. As the inflow moves toward the propeller, the effect of phase angle variation of propeller blade on the inflow becomes dominant. In the upper plane above the propeller axis the inflow has very low axial velocity and large turbulent kinetic energy, compared with the lower plane. The boundary layer developed along the bottom surface of stern hull forms a strong shear layer affecting vortex structure of the propeller near-wake.

전자제어 엔진의 공기유량센서 유동구조 연구 (Flow Mechanism around Air Flow Sensor of Electronic Control Engine)

  • 이종춘;황성만;부정숙
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권4호
    • /
    • pp.486-493
    • /
    • 2000
  • Flow mechanism around air flow sensor of electronic control engine, especially Karman vortex type, was investigated experimentally. The two-dimensional flow characteristics in the intermediate wake region behind a triangular vortex-generator respectively apex forward facing, apex backward facing and vertical flat plates following after apex forward facing(i.e vortex-flowmeter) were investigated at Reynolods number of $ReH=1.4\times10^4$; H is the width of a triangular vortex-generator. The vortex shedding frequency for wide Reynolds number from $7\times10^3$ to $2.1\times10^4$ was also surveyed. The velocity component was measured by X-type hot wire anemometer at 8H downstream from the bluff body. The coherent structure of the intermediate wake behind a bluff body was obtained by conditional phase average technique. As a result, it was verified that the vertical flat plates following after apex forward triangular vortex-generator make not only more linear relation between free stream velocity and vortex shedding frequency but also more periodic vortex in the vicinity of the center of wake.

  • PDF

앙각을 가진 타원형 실린더 후류와 평판경계층의 상호작용에 대한 연구 (Interaction between Turbulent Boundary Layer and Wake Behind an Elliptic Cylinder at Incidence)

  • 최재호;이상준
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.976-983
    • /
    • 2000
  • The flow characteristics around an elliptic cylinder with axis ratio of AR=2 located near a flat plate were investigated experimentally to study the interaction between the cylinder wake and the turbulent boundary layer. The pressure distributions on the cylinder surface and on the flat plate were measured with varying the angle of attack of the cylinder. In addition, the velocity profiles of wake behind the cylinder were measured using a hot-wire anemometry As the angle of attack increases, the location of peak pressure on the windward and leeward surfaces of the cylinder moves toward the rear and front of the cylinder, respectively. At positive angles of attack, the position of the minimum pressure on the flat plate surface is moved downstream, but it is moved upstream at negative angles of attack. With increasing the angle of attack, the vortex shedding frequency is gradually decreased and the critical angle of attack exists in terms of the gap ratio. By installing the elliptic cylinder at negative angle of attack, the turbulent boundary layer over the flat plate is disturbed more than that at positive incidence. This may be attributed to the shift of separation point on the lower surface of the cylinder due to the presence of a ground plate nearby.

Monitoring and control of wind-induced vibrations of hanger ropes of a suspension bridge

  • Hua, Xu G.;Chen, Zheng Q.;Lei, Xu;Wen, Qin;Niu, Hua W.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.683-693
    • /
    • 2019
  • In August 2012, during the passage of the typhoon Haikui (1211), large amplitude vibrations were observed on long hangers of the Xihoumen suspension Bridge, which destroyed a few viscoelastic dampers originally installed to connect a pair of hanger ropes transversely. The purpose of this study is to identify the cause of vibration and to develop countermeasures against vibration. Field measurements have been conducted in order to correlate the wind and vibration characteristics of hangers. Furthermore, a replica aeroelastic model of prototype hangers consisting of four parallel ropes was used to study the aeroelastic behavior of hanger ropes and to examine the effect of the rigid spacers on vibration mitigation. It is shown that the downstream hanger rope experiences the most violent elliptical vibration for certain wind direction, and the vibration is mainly attributed to wake interference of parallel hanger ropes. Based on wind tunnel tests and field validation, it is confirmed that four rigid spacers placed vertically at equal intervals are sufficient to suppress the wake-induced vibrations. Since the deployment of spacers on hangers, server hanger vibrations and clash of hanger ropes are never observed.

다른 크기의 피치를 가진 후류장에 놓인 익렬의 비정상 공기역학적 특성에 관한 수치해석적 연구 (The Unsteady Aerodynamic Characteristics of a Cascade subjected to a upstream wake with different pitch)

  • 전현주;강동진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.610-615
    • /
    • 2001
  • Effects of rotor-stator blade count ratio on the unsteady aerodynamic characteristics of a cascade was studied by using a Navier-Stokes code. Present Navier-Stokes code is a parallel code and works on a multi-cpu machine. It is based on the SIMPLE algorithm and uses QUICK scheme for convection terms and second order back difference for all temporal derivatives. Computations were carried out for two cases : case 1 is for 3 stator cascade passages subjected to two upstream wakes while case 2 is for 2 stator cascade passages subjected to three upstream wakes. Numerical solutions show that rotor-stator blade count ratio plays a significant role in the unsteady aerodynamic characteristics of the stator cascade. Case 2 shows smaller unsteady fluctuation than case 1, even if they show the same time averaged value. The smaller fluctuation of case 2 is believed due to strong interaction between unsteady vortices. The unsteady lift variation of case 2 is shown to have many high frequency fluctuations as more unsteady vortices travel around the cascade. The unsteady turbulent kinetic energy due to the upstream wake is also shown to decay faster through the cascade passage than in the free stream.

  • PDF

와류생성기를 부착한 선박의 속도성능에 대한 수치적 추정 (Computational Prediction of Speed Performance for a Ship with Vortex Generators)

  • 최정은;김정훈;이상봉;이홍기
    • 대한조선학회논문집
    • /
    • 제46권2호
    • /
    • pp.136-147
    • /
    • 2009
  • The computational prediction method of speed performance for a ship with vortex generators is proposed. The Reynolds averaged Navier-Stokes equation has been solved together with the application of Reynolds stress turbulence model. The computations are carried out under identical conditions of the experimental method, i.e., towing and self-propulsion calculations without and with vortex generators. The speed performance in full scale is obtained through analyzing the computational results in model scale according to the revised model-ship performance analysis method of ITTC'78 with considering the vortex generators into account. The characteristics of resistance, self-propulsion and wake characteristics on the propeller plane are investigated. The proposed computational prediction clearly shows the effect of vortex generators and can be applicable to the design tool for vortex generators.

전기구동 림 추진기의 덕트 형상 최적화 연구 (A study on optimization of duct shape of electric hubless rim-driven propeller)

  • 편용범;배재현;김형호;이창제
    • 수산해양기술연구
    • /
    • 제59권1호
    • /
    • pp.65-73
    • /
    • 2023
  • This study analyzed the duct characteristics of hubless rim-driven propeller (RDP) used in underwater robots. In the previous study, flow visualization experiments were performed with an advancing ratio of 0.2 to 1. The vortex at the front of the duct increased in strength while maintaining its size as the advancing ratio decreased. Therefore, it is necessary to study the optimization of the duct shape. Conventional propeller thrusters use acceleration/deceleration ducts to increase their efficiency. However, unlike conventional propellers, it is impossible to apply to airfoil acceleration/deceleration ducts due to the RDP structure. In this study, duct wake flow characteristics, thrust force, and efficiency according to the duct shape of RDP were analyzed using numerical analysis techniques. Duct design is limited and six duct shapes were designed. As a result, an optimized duct shape was designed considering duct wake flow characteristics, thrust force, and efficiency. The shape that the outlet width of the RDP was kept constant until the end of the duct showed higher thrust force and efficiency.

주기적 후류 내의 익형 위 천이경계층에 관한 실험적 연구(II) -위상평균된 유동특성- (Experimental Study of Boundary Layer Transition on an Airfoil Induced by Periodically Passing Wake (II) -A Phase-Averaged Characteristic-)

  • 박태춘;전우평;강신형
    • 대한기계학회논문집B
    • /
    • 제25권6호
    • /
    • pp.786-798
    • /
    • 2001
  • This paper describes the phenomena of wake-induced transition of the boundary layers on a NACA0012 airfoil using measured phase-averaged data. Especially, the phase-averaged wall shear stresses are reasonably evaluated using the principle of Computational Preston Tube Method. Due to the passing wake, the turbulent patch is generated in the laminar boundary layer on the airfoil and the boundary layer becomes temporarily transitional. The patches propagate downstream with less speed than free-stream velocity and merge with each other at further down stream station, and the boundary layer becomes more transitional. The generation of turbulent patch at the leading edge of the airfoil mainly depends on velocity defects and turbulent intensity profiles of passing wakes. However, the growth and merging of turbulent patches depend on local streamwise pressure gradients as well as characteristics of turbulent patches. In this transition process, the present experimental data show very similar features to the previous numerical and experimental studies. It is confirmed that the two phase-averaged mean velocity dips appear in the outer region of transitional boundary layer for each passing cycle. Relatively high values of the phase-averaged turbulent fluctuations in the outer region indicate the possibility that breakdown occurs in the outer layer not near the wall.