• 제목/요약/키워드: Wake Velocity

검색결과 458건 처리시간 0.025초

가열된 원주후류의 열성층 영향에 대한 연구 (A Study on the Effect of Thermal Stratification of a Heated Cylinder Wake)

  • 김경천;정양범
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2454-2462
    • /
    • 1994
  • The effects of thermal stratification on the flow of a stratified fluid past a heated circular cylinder were examined in a wind tunnel. Turbulent intensities, rms values of temperature and turbulent convective heat flux distributions in the heated cylinder wake with and without thermal stratification were measured by using a hot-wire and cold-wire combination probe. A phase averaging method was also used to estimated coherent motion in the near wake. It is found that the vertical turbulent motion in the stably stratified flow case dissipates faster than that of the neutral case, i.e., vertical growth of vortical structure is suppressed under the strongly stratified condition. The coherent motion of temperature makes a large contribution like velocity coherent motion. However, the coherent motions of temperature fluctuation become very different with the change of experimental conditions, though the velocity coherent motions are quite similar in all experimental conditions.

PIV 계측에 의한 실린더 근접후류에서 2차 와류의 특성 연구 (A Study on Characteristics of Secondary Vortices in the Near Wake of a Circular Cylinder by PIV Measurement)

  • 성재용;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.404-409
    • /
    • 2000
  • Characteristics of secondary vortices is topologically investigated in the near-wake region of a circular cylinder where the Taylor hypothesis does not hold. The three-dimensional flow fields in the wake-transition regime were measured by a time-resolved PIV. For the analysis in a moving frame of reference, the convection velocity of the Karman vortices is evaluated from the trajectory of vortex center which is defined as the centroid of the vorticity field. Then, a saddle point is obtained by applying the critical point theory. Science the distributions of fluctuating Reynolds stresses defined by triple-decomposition are closely related with the existence of secondary vortices. the physical meaning of them is explained in conjunction with vortex center and saddle point trajectories. Finally, the temporal evolution of streamwise vortex is also discussed.

  • PDF

가스터빈 회전익 채널내 2차원 비정상 유동 및 열전달 특성에 관한 연구 (A Study on the 2-D Unsteady Flow and Heat Transfer on Turbine Rotor Passage)

  • 구경하;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.428-433
    • /
    • 2000
  • The characteristics of unsteady heat transfer and boundary layer flow in the SSME turbine rotor passage are investigated with LRN $k-{\varepsilon}$ turbulence model. The unsteady flow and heat transfer in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid/boundary-layer flow approach. The relevant governing equations are discretized to a system of finite different equations by means of a BTBCS implicit method. These equations have been solved numerically, for the velocity and temperature fields using TDMA method. Heat flux on the blade surface and flow parameters in the rotor passage are calculated with wake interaction. Numerical results show that velocity, pressure, turbulent kinetic energy and heat flux on the blade surface are varied periodically by wake passing.

  • PDF

대형 풍력터빈 모형의 공력 성능 및 후류 유동장에 대한 비교 연구 (Comparison Study on Aerodynamic Performance and Wake Flow Field for a MW-Class Wind Turbine Model)

  • 정두원;원영수;강승희
    • 한국가시화정보학회지
    • /
    • 제17권2호
    • /
    • pp.32-38
    • /
    • 2019
  • A comparison study between computational-fluid-dynamics simulation and wind tunnel test for a megawatt-class wind turbine is conducted. For the study, flow-field in wake, basic aerodynamic performance, and effect of the yaw error for a 1/86 scaled-down model of the NREL offshore 5 MW wind turbine are numerically calculated using commercial software "FloEFD" with $k-{\varepsilon}$ turbulence model. The computed results are compared to the wind tunnel test performed by the constant-velocity mode for the model. It is shown that discrepancy are found between the two results at lower tip-speed ratio and higher yaw angle, however, the velocity-defection distribution in the wake, the torque coefficient at moderated and high tip-speed ratios are in good agreement with the wind tunnel test.

삼상 슬러리 기포탑의 세 기능영역 체류량 특성 (Holdup Characteristics of Three Functional Regions in a Slurry Bubble Column)

  • 장지화;임대호;강용;전기원
    • Korean Chemical Engineering Research
    • /
    • 제48권3호
    • /
    • pp.359-364
    • /
    • 2010
  • 직경이 0.152 m인 삼상슬러리 기포탑에서 연속 슬러리상 영역(${\varepsilon}_f$), 기포영역(${\varepsilon}_b$) 그리고 기포의 후면에서 기포와 같이 상승하는 소용돌이 영역인 wake 영역(${\varepsilon}_w$)의 세 종류의 기능영역을 분류하여 이들 각 영역의 체류량을 구하였다. 기포탑에서 기포영역과 wake 영역의 체류량은 전기저항 탐침법에 의해 결정하였다. 기체유속($U_G$)과 슬러리상에서 고체입자의 농도($S_c$)가 삼상슬러리 기포탑에서 각 기능영역의 체류량에 미치는 영향을 검토하였다. 슬러리 기포탑에서 기체유속이 증가하면 연속 슬러리상의 체류량은 감소하였으나, 기포와 wake의 체류량은 증가하였다. 슬러리상에서 고체입자의 농도가 증가함에 따라 연속 슬러리상 영역의 체류량은 증가하였으나, 기포와 wake 영역의 체류량은 감소하는 경향을 나타내었다. wake 영역의 체류량은 기포영역 체류량의 15~40% 정도를 나타났으며, 기체유속이 증가함에 따라 wake 영역의 기포영역에 대한 분율은 감소하였다. 본 연구의 범위에서 세 기능영역의 체류량은 각각 실험 변수의 상관식으로 나타낼 수 있었다.

PIV기법을 이용한정사각실린더의 근접후류에 관한 연구 (III) - 위상평균유동장 - (A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry (III) - Phase Average -)

  • 이만복;김경천
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1527-1534
    • /
    • 2001
  • Phase averaged velocity fields in the near wake region behind a square cylinder have been (successfully) obtained using randomly sampled PIV data sets. The Reynolds number based on the flow velocity and the vertex height was 3,900. To identify the phase information, we examined the magnitude of circulation and the center of peak vorticity. The center of vorticity was estimated from lowpass filtered vorticity contours (LES decomposition) adopting a sub-pixel searching algirithm. Due to the sinusoidal nature of firculation which is closely related to the instantaneous vorticity, the location of peak voticity fits well with a sine curve of the circulation magnitude. Conditionally-averaged velocity fields represent the barman vortex shedding phenomenon very well within 5 degrees phase uncertainty. The oscillating nature of the separated shear layer and the separation bubble at the top surface are clearly observed. With the hot-wire measurements of Strouhal frequency, we found thats the convection velocity changes its magnitude very rapidly from 25 to 75 percent of the free stream velocity along the streamwise direction when the flow passes by the recirculation region.

톱니형 휜이 부착된 원주의 근접후류특성 연구 (IV) - 와형성영역의 유동비교 - (Characteristics of Near Wake Behind a Circular Cylinder with Serrated fins (IV) - Comparison of Vortex Formation Regions -)

  • 류병남;김경천;부정숙
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.357-366
    • /
    • 2003
  • An experimental study is performed to investigate characteristics of near of wakes of circular cylinders with serrated fins using a hot-wire anemometer for various freestream velocities. The main focus of this paper is to investigate a reason why a vortex formation length is increased suddenly. Velocity of the fluid which flow through fins decreases as fin's height and freestream velocity increases and fin pitch decreases, and a thickness of boundary layer increases. The finned tube has a lower velocity gradient when the higher boundary layer grows. This velocity gradient on finned tube makes a weak shear force in the wake and moves to downstream in a state of lower momentum transfer between the freestream and the wake. The phenomenon makes a vortex formation length increased suddenly. The fluctuations of the velocity distributions on the finned tube and (equation omitted) = 1.0 contour line in the vortex formation region decreases when the fin height increases and the pitch decreases.

터빈 후류를 관찰하기 위한 와류 코어 식별 기법 연구 (Investigation of vortex core identification method for wind turbine wake)

  • 고승철;나지성;이준상
    • 한국가시화정보학회지
    • /
    • 제15권1호
    • /
    • pp.19-24
    • /
    • 2017
  • In this study, we conduct a numerical experiment of the single 5MW NREL wind turbine and compare the performance of various vortex core identification for the wake behind the wind turbine. In the kinetic analysis of wind turbine, 20% velocity deficit at 200 s is observed, showing wake which contains tip vortex near blade tip and rotor vortex at the center of the wind turbine. Time series of velocity and turbulent intensity show numerical simulation converge to a quasi-steady state near 200 s. In the comparison between methods for vortex identification, ${\lambda}_2$-method has good performance in terms of tip vortex, rotor vortex, vortex during its cascade process compared to vorticity magnitude criteria, ${\Delta}$-method. We conclude that ${\lambda}_2$-method is suitable for vortex identification method for wake visualization.

진동하는 NACA 4412 에어포일 근접후류에서의 레이놀즈수 효과 1: 평균속도장 (Reynolds Number Effects on the Near-Wake of an Oscillating Naca 4412 Airfoil, Part 1 : Mean Velocity Field)

  • 장조원
    • 한국항공우주학회지
    • /
    • 제31권7호
    • /
    • pp.15-25
    • /
    • 2003
  • 진동하는 에어포일의 근접후류 특성을 조사하기 위한 실험적 연구가 수행되었다. NACA 4412에어포일은 1/4 시위 지점을 중심으로 조화적으로 피칭운동을 하고, 순간받음각이 +6$^{\circ}$에서 -6$^{\circ}$까지 진동하도록 하였다. 진동하는 에어포일의 근접후류에서의 평균속도를 측정하기 위하여 열선풍속계를 사용하였다. 본 연구에서 자유류의 속도는 3.4, 12.4, 26.2 m/s이다. 이러한 자유류 속도에 따른 시위 레이놀즈수는 $R_N$=5.3${\times}10^4$, 1.9${\times}10^5$, 4.1${\times}10^5$이고, 무차원 진동수는 K=0.1이다. 레이놀즈수가 진동하는 에어포일의 근접후류에 미치는 영향을 나타내기 위하여 축방향 위상평균 속도분포를 제시하였다. 본 측정에서 모든 경우에 속도결손은 $R_N$=5.3${\times}10^4$인 경우에 아주 크고, $R_N$=1.9${\times}10^5$과 4.1${\times}10^5$인 경우에는 작다는 것을 관찰 할 수 있었다. 이와 같이 위상평균속도의 커다란 차이는 $R_N$=5.3${\times}10^4$과 1.9${\times}10^5$ 사이에 있다는 것을 관찰하였다. 따라서 본 연구는 진동하는 에어포일의 근접후류에서의 레이놀즈수의 임계값이 5.3${\times}10^4$에서 1.9${\times}10^5$ 범위에 존재한다는 것을 보여준다.

Prediction of nominal wake of a semi-displacement high-speed vessel at full scale

  • Can, Ugur;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • 제12권2호
    • /
    • pp.143-157
    • /
    • 2022
  • In this study, the nominal wake field of a semi-displacement type high-speed vessel was computed at full scale by using CFD (Computational Fluid Dynamics) and GEOSIM-based approaches. A scale effect investigation on nominal wake field of benchmark Athena vessel was performed with two models which have different model lengths. The members of the model family have the same Fr number but different Re numbers. The spatial components of nominal wake field have been analyzed by considering the axial, radial and tangential velocities for models at different scales. A linear feature has been found for radial and tangential components while a nonlinear change has been obtained for axial velocity. Taylor wake fraction formulation was also computed by using the axial wake velocities and an extrapolation technique was carried out to get the nonlinear fit of nominal wake fraction. This provides not only to observe the change of nominal wake fraction versus scale ratios but also to estimate accurately the wake fraction at full-scale. Extrapolated full-scale nominal wake fractions by GEOSIM-based approach were compared with the full-scale CFD result, and a very good agreement was achieved. It can be noted that the GEOSIM-based extrapolation method can be applied for estimation of the nominal wake fraction of semi-displacement type high-speed vessels.