• 제목/요약/키워드: Wake Velocity

검색결과 458건 처리시간 0.02초

입자영상유속계를 이용한 은어 (Plecoglossus altivelis)의 유영능력 측정 (Measurement of swimming ability of silver fish (Plecoglossus altivelis) using a Particle Imaging Velocimetry)

  • 배재현;이경훈;신종근;양용수;이주희
    • 수산해양기술연구
    • /
    • 제47권4호
    • /
    • pp.411-418
    • /
    • 2011
  • As a fish way is a structure for fish migrating well toward upper stream due to breaking river flow by a dam or dammed pool, the specific fish's swimming ability is one of the main factors in making a plan and managing it. In addition, it also needs to understand the current field in fish road to evaluate its performance. This study is aimed to analyze the swimming patterns with current velocity changes using a Particle Imaging Velocimetry (PIV) in order to understand the swimming ability of silver fish (Plecoglossus altivelis) that is one of the fishes migrating through the fish way of Nakdong River, and to analyze the 2 dimensional current field near to silver fish at swimming momentum. The results showed that average values of tail beat frequencies for continuous swimming with current velocity were 2.8 Hz at 0.3 m/s, 3.2 Hz at 0.4 m/s, 3.8 Hz at 0.5 m/s, respectively. The wake would be produced by direction turning of fish's tail fin and its magnitude would be verified by the difference of pressure. The pressure turbulent flow produced by its tail beat would be made in both sides, and then, the magnitude of wake should be the source of moving direction. The swimming momentum will help to support the primary factor in making a suitable design for specific fish species migrating toward the district river.

퓨리에 변환을 활용한 유동 가시화 비교 분석 (Analysis of Flow Visualization Results Using Fourier Transform)

  • 구본국;박준모;강용덕
    • 융합신호처리학회논문지
    • /
    • 제20권4호
    • /
    • pp.199-204
    • /
    • 2019
  • 경계층 내 측정된 유속은 변동 성분을 활용한 표준편차 혹은 배경 유속을 포함한 평균 속도로 해석되어 왔다. 하지만, 각각의 결과로 유동 상호작용을 설명하는데 한계가 있어 본 논문에서는 시간 영역의 유속을 퓨리에 변환하여 주파수 분석으로 유동 현상을 규명하는 방법을 제안한다. 이를 위해 경계층 내 평판 위에 부착된 반구 내부로 염료를 주입시켜 후류 영역에서 생성되는 머리핀 와류를 가시화하여 발생 빈도를 계측하였다. 또한 반구 전방의 평판을 뚫어 흡입함으로써 후류 영역 내 유속 변화를 열선 유속계로 측정하였다. 제안된 주파수 분석의 평가를 위해 기존의 통계 해석법과 비교하였으며, 유동의 정성적인 결과에 부합하는 주파수 분석과정을 제시한다.

Numerical and experimental study of unsteady wind loads on panels of a radar aerial

  • Scarabino, Ana;Sainz, Mariano Garcia;Bacchi, Federico;Delnero, J. Sebastian;Canchero, Andres
    • Wind and Structures
    • /
    • 제23권1호
    • /
    • pp.1-18
    • /
    • 2016
  • This work experimentally and numerically analyzes the flow configurations and the dynamic wind loads on panels of rectangular L/h 5:1 cross section mounted on a structural frame of rectangular bars of L/h 0.5:1, corresponding to a radar structure. The fluid dynamic interaction between panels and frame wakes imposes dynamic loads on the panels, with particular frequencies and Strouhal numbers, different from those of isolated elements. The numerical scheme is validated by comparison with mean forces and velocity spectra of a panel wake obtained by wind tunnel tests. The flow configuration is analyzed through images of the numerical simulations. For a large number of panels, as in the radar array, their wakes couple in either phase or counter-phase configurations, changing the resultant forces on each panel. Instantaneous normal and tangential force coefficients are reported; their spectra show two distinct peaks, caused by the interaction of the wakes. Finally, a scaled model of a rectangular structure comprised of panels and frame elements is tested in the boundary layer wind tunnel in order to determine the influence of the velocity variation with height and the three-dimensionality of the bulk flow around the structure. Results show that the unsteady aerodynamic loads, being strongly influenced by the vortex shedding of the supporting elements and by the global 3-D geometry of the array, differ considerably on a panel in this array from loads acting on an isolated panel, not only in magnitude, but also in frequency.

Experimental Study on the Unsteady Flow Characteristics for the Counter-Rotating Axial Flow Fan

  • Cho, L.S.;Lee, S.W.;Cho, J.S.;Kang, J.S.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.790-798
    • /
    • 2008
  • Counter-rotating axial flow fan(CRF) consists of two counter-rotating rotors without stator blades. CRF shows the complex flow characteristics of the three-dimensional, viscous, and unsteady flow fields. For the understanding of the entire core flow in CRF, it is necessary to investigate the three-dimensional unsteady flow field between the rotors. This information is also essential to improve the aerodynamic characteristics and to reduce the aerodynamic noise level and vibration characteristics of the CRF. In this paper, experimental study on the three-dimensional unsteady flow of the CRF is performed at the design point(operating point). Flow fields in the CRF are measured at the cross-sectional planes of the upstream and downstream of each rotor using the $45^{\circ}$ inclined hot-wire. The phase-locked averaged hot-wire technique utilizes the inclined hot-wire, which rotates successively with 120 degree increments about its own axis. Three-dimensional unsteady flow characteristics such as tip vortex, secondary flow and tip leakage flow in the CRF are shown in the form of the axial, radial and tangential velocity vector plot and velocity contour. The phase-locked averaged velocity profiles of the CRF are analyzed by means of the stationary unsteady measurement technique. At the mean radius of the front rotor inlet and the outlet, the phase-locked averaged velocity profiles show more the periodical flow characteristics than those of the hub region. At the tip region of the CRF, the axial velocity is decreased due to the boundary layer effect of the fan casing and the tip vortex flow. The radial and the tangential velocity profiles show the most unstable and unsteady flow characteristics compared with other position of rotors. But, the phase-locked averaged velocity profiles of the downstream of the rear rotor show the aperiodic flow pattern due to the mixture of the front rotor wake period and the rear rotor rotational period.

  • PDF

다수 풍력터빈의 후류영향 최소화 및 연간발전량 극대화를 위한 부유식 파력-해상풍력 플랫폼 최적배치 (Optimal arrangement of multiple wind turbines on an offshore wind-wave floating platform for reducing wake effects and maximizing annual energy production)

  • 김종화;정지현;김범석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.209-215
    • /
    • 2017
  • 대형 부유식 파력-해상풍력 복합발전시스템은 정 사각형(폭 150m) 부유식 플랫폼 컬럼 상부에 4기의 3MW 풍력터빈이 설치된다. 전방 풍력터빈으로부터 발생되는 후류는 터빈배치에 따라 후방 풍력터빈의 출력성능과 하중특성에 불리한 영향을 미치므로 후류간섭에 대한 유동해석을 통해 최적배치설계가 실시되어야 한다. 본 논문에서는 플랫폼 배치조건($0^{\circ}$, $22.5^{\circ}$, $45^{\circ}$) 변화에 따른 개별 풍력터빈의 출력특성 및 연간에너지생산량을 확인하기 위해 풍속변화(8m/s, 11.7m/s, 19m/s 25m/s)에 대한 비정상상태 CFD 해석을 실시하였다. 레일리분포를 적용한 연간에너지생산량 계산결과는 각 배치조건에 따라 다르게 나타났으며, 해석결과에 근거하여 후류손실이 최소화 될 수 있는 최적 배치설계를 제안하였다.

Impact of the lateral mean recirculation characteristics on the near-wake and bulk quantities of the BARC configuration

  • Lunghi, Gianmarco;Pasqualetto, Elena;Rocchio, Benedetto;Mariotti, Alessandro;Salvetti, Maria Vittoria
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.115-125
    • /
    • 2022
  • The high-Reynolds number flow around a rectangular cylinder, having streamwise to crossflow length ratio equal to 5 is analyzed in the present paper. The flow is characterized by shear-layer separation from the upstream edges. Vortical structures of different size form from the roll-up of these shear layers, move downstream and interact with the classical vortex shedding further downstream in the wake. The corresponding mean flow is characterized by a recirculation region along the lateral surface of the cylinder, ending by mean flow reattachment close to the trailing edge. The mean flow features on the cylinder side have been shown to be highly sensitive to set-up parameters both in numerical simulations and in experiments. The results of 21 Large Eddy Simulations (LES) are analyzed herein to highlight the impact of the lateral mean recirculation characteristics on the near-wake flow features and on some bulk quantities. The considered simulations have been carried out at Reynolds number Re=DU_∞/ν=40 000, being D the crossflow dimension, U_∞ the freestream velocity and ν the kinematic viscosity of air; the flow is set to have zero angle of attack. Some simulations are carried out with sharp edges (Mariotti et al. 2017), others with different values of the rounding of the upstream edges (Rocchio et al. 2020) and an additional LES is carried out to match the value of the roundness of the upstream edges in the experiments in Pasqualetto et al. (2022). The dimensions of the mean recirculation zone vary considerably in these simulations, allowing us to single out meaningful trends. The streamwise length of the lateral mean recirculation and the streamwise distance from the upstream edge of its center are the parameters controlling the considered quantities. The wake width increases linearly with these parameters, while the vortex-shedding non-dimensional frequency shows a linear decrease. The drag coefficient also linearly decreases with increasing the recirculation length and this is due to a reduction of the suctions on the base. However, the overall variation of C_D is small. Finally, a significant, and once again linear, increase of the fluctuations of the lift coefficient is found for increasing the mean recirculation streamwise length.

Flight Dynamics Analyses of a Propeller-Driven Airplane (II): Building a High-Fidelity Mathematical Model and Applications

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.356-365
    • /
    • 2014
  • This paper is the second in a series and aims to build a high-fidelity mathematical model for a propeller-driven airplane using the propeller's aerodynamics and inertial models, as developed in the first paper. It focuses on aerodynamic models for the fuselage, the main wing, and the stabilizers under the influence of the wake trailed from the propeller. For this, application of the vortex lattice method is proposed to reflect the propeller's wake effect on those aerodynamic surfaces. By considering the maneuvering flight states and the flow field generated by the propeller wake, the induced velocity at any point on the aerodynamic surfaces can be computed for general flight conditions. Thus, strip theory is well suited to predict the distribution of air loads over wing components and the viscous flow effect can be duly considered using the 2D aerodynamic coefficients for the airfoils used in each wing. These approaches are implemented in building a high-fidelity mathematical model for a propeller-driven airplane. Flight dynamic analysis modules for the trim, linearization, and simulation analyses were developed using the proposed techniques. The flight test results for a series of maneuvering flights with a scaled model were used for comparison with those obtained using the flight dynamics analysis modules to validate the usefulness of the present approaches. The resulting good correlations between the two data sets demonstrate that the flight characteristics of the propeller-driven airplane can be analyzed effectively through the integrated framework with the propeller and airframe aerodynamic models proposed in this study.

평판 가까이에 놓인 타원형 실린더 주위 유동에 관한 연구 (Flow Around an Elliptic Cylinder Placed Near a Plane Boundary)

  • 김성민;이상준
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2637-2649
    • /
    • 1996
  • Flow characteristics and aerodynamic forces acting on an elliptic cylinder placed in a plane boundary layer were investigated experimentally. Four cylinder models with axis ratio(major axis to minor axis, AR=A/B) of 1, 2, 3, and 4 having the same equivalent diameter were used in this experiment. The Reynolds number based on the equivalent diameter $D_e$(=20mm) was 13,000. In the case of circular cylinder, regular vortex shedding occurs for the cylinder gaps larger than G/B=0.3 and is not almost related to the boundary layer thickness. But, for the elliptic cylinders, the vortex shedding frequency is increased with increasing the gap ratio (G/B) and the axis ratio (AR) of elliptic cylinders. The maximum drag coefficient acting on a circular cylinder is mainly affected by the boundary layer thickness. But, the elliptic cylinders(AR$\geq$2), except for the smaller gap G/B<0.2, show a nearly constant drag coefficient which is much smaller than that of a circular cylinder. The base pressure on the flat plate decreases with increasing the axis ratio(AR) of the elliptic cylinder. In the case of a circular cylinder, the base pressure has the minimum value at the gap ratio G/B=0.4, but it occurs at G/D=2 for elliptic cylinders. The mean velocity of the cylinder wake is quickly recovered at a small cylinder height ratio(H/$\delta$), but the turbulent intensity is rapidly recovered at a large cylinder height ratio(H/$\delta$). The effective wake region in the plane boundary layer is shrinkaged with increasing the axis ratio(AR) of elliptic cylinder. And the drag coefficient and streamwise turbulent intensity of the elliptic cylinder with AR=4 are less than half of those for the circular cylinder(AR=1).

복엽기 배치의 복식 플랩핑 에어포일들의 추력 특성 (Thrust Characteristics of Dual Flapping Airfoils in a Biplane Configuration)

  • 유영복;한철희;조진수
    • 한국항공우주학회지
    • /
    • 제33권7호
    • /
    • pp.9-17
    • /
    • 2005
  • 비정상 패널법을 이용하여 복엽기 형태 배치의 복식 플랩핑 에어포일들에 대한 후류의 형상 및 추력 특성을 연구하였다. 에어포일들에서 발생하는 후류 형상은 와핵 모델, 와핵 첨가법 그리고 4계 Runge-Kutta 법을 사용하여 계산하였다. 해석 결과는 유동 가시화, 엄밀해 그리고 전산 해석 결과와 비교하여 검증하였다. 복엽기 배치의 에어포일의 경우, 두께 및 캠버는 추력을 감소시키는 효과가 있었다. 플런징과 피칭 운동들 사이의 위상차가 90도 및 120도 일 때 최대 추력이 발생하였다. 플런지 속도 및 피치 크기가 클수록 추력은 증가하였다. 에어포일 사이의 거리가 감소할수록 추력은 증가하나, 0.6c 이하로 가까워질 경우 추력은 감소하였다.

자유표면하에서 전진하는 3차원 물체 주위의 양력 흐름 수치 해석 (Numerical Analysis of Lifting Potential Flow around a Three-Dimensional Body moving beneath the Free Surface)

  • 김부기
    • 대한조선학회논문집
    • /
    • 제29권3호
    • /
    • pp.21-32
    • /
    • 1992
  • 자유 수면하를 영각을 가지고 일정 속도로 전진하는 3차원 물체가 만드는 자유 표면 흐름에 대한 수치해를 보인다. 해를 구하기 위해 물체 표면에 Havelock 쏘오스와 법선 다이폴을, Wake 면에는 Havelock 법선 다이폴을 분포시키는 교란 속도 포텐시얼을 기저로 한 패널법을 이용하였다. Trailing Edge의 윗면과 아랫면의 압력 등가 조건을 정확히 만족시키기 위해 반복 기법을 이용한 압력 Kutta 조건을 사용하였다. 무한 유체 영역에 놓인 Ellipsoid와 사각 Wing에 대해 계산 프로그램을 검증한 후 자유 수면하에 잠수하여 전진하는 Spheroid와 스트럿에 대한 문제를 다루었다. 본 연구에서 채택한 Panel Method는 자유 표면 효과, 3차원 물체의 형상을 고려하여 물체에 작용하는 동유체력을 비교적 정확하게 예측하였으며 특히 Wake 형상은 동유체력 계산에 큰 영향을 미치지 않는 것으로 확인하였다.

  • PDF