• Title/Summary/Keyword: Wake Homing Torpedo

Search Result 3, Processing Time 0.016 seconds

Robust Ship Wake Search Method in the Target Evasion Environment (회피 기동에 강인한 수상 항적 탐색 방법)

  • Ku, Bon-Hwa;Lee, Young-Hyun;Pak, Jung-Min;Chung, Suk-Moon;Hong, Woo-Young;Kim, Woo-Shik;Lim, Myo-Taeg;Ko, Han-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.8-17
    • /
    • 2009
  • This paper proposes robust ship wake search method in the target evasion environment. Moving surface ships generate a long trailing wake in the rear of a surface ship. Wake homing torpedo sensing this wake can detect the surface target and engage it automatically. In wake homing torpedo, wake search method is important element to maximize effectiveness of wake homing torpedo. This paper proposes one-side, two-side and centering mode according to passing wake boundary scenarios. Also, wake deflection angle is deduced by using the principle of deflection angle of acoustic torpedo. The representative experimental results using monte-carlo simulation demonstrate that the searching method using one-side mode is superior to two-side and centering mode in the target evasion environment.

A Simulator Development of Surface Warship Torpedo Defense System considering Bubble-Generating Wake Decoy (기포발생식 항적기만기를 고려한 수상함 어뢰방어체계 시뮬레이터 개발)

  • Wooshik Kim;Myoungin Shin;Jisung Park;Ho Seuk Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.416-427
    • /
    • 2024
  • The wake-homing underwater guided weapon that detects and tracks wake generated during voyage of a surface ship is impossible to avoid with the present acoustic deception torpedo defense system. Therefore, research on bubble-generating wake decoy is necessary to deceive wake-homing underwater guided weapon. Experiments in various environments are required to verify the effective operation method and performance of the wake decoy, but performance verification through underwater experiment is limited. In this paper, we develop a simulator for an torpedo defense system of surface ship, which is applied bubble-generating wake decoy, against acoustic, wake, and hybrid homing underwater guided weapon attack. The simulator includes surface ship model, acoustic decoy(static, mobile) model, bubble-generating wake decoy model, search and motion model of underwater guided weapon and so on. By integrating various models, MATLAB GUI simulator was developed. Through the simulation results for various environmental variables by this simulator, it is judged that effective operation method and performance verification of the bubble-generating wake decoy can be performed.

Robust Search Method for Ship Wake Using Two Wake Sensors (두 개의 항적 센서를 이용한 수상 항적 탐색 방법)

  • Lee, Young-Hyun;Ku, Bon-Hwa;Chung, Suk-Moon;Hong, Woo-Young;Ko, Han-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.155-164
    • /
    • 2010
  • This paper proposes a robust detection method for ship wake search using two wake sensors. A long trailing wake in the rear of a surface ship is generated along the track of surface ships. In this paper, we assume that the nearer the surface ship, the stronger wake strength is and a two-sensor based wake homing torpedo can sense for the wake strength. On this assumption we propose a simple wake detection and search method using information of wake strength. Experimental results using monte-carlo simulation demonstrate that the proposed method yields better performance in search time than previous method, which uses a single sensor. Our method is shown faster by about 45 seconds than previous method to achieve the same performance. Also, it can improve the detection performance of torpedo in the case of short wake length.