• Title/Summary/Keyword: Wake/Rotor Interaction

Search Result 57, Processing Time 0.023 seconds

Experimental Study on the Effects of Upstream Periodic Wakes on Aerofoil-Boundary Layer and Loss (주기적 상류 후류의 익 경계층과 손실에 매치는 영향에 대한 실험적 연구)

  • Im, In-Won;Jo, Gang-Rae;Ju, Won-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.219-226
    • /
    • 2002
  • This paper is concerned with the effects of periodically approaching upstream wakes on cascade-flow and loss. The reduced frequency of the periodic wakes was varied in the narrow range from 0.5 to 0.7 Corresponding to a wake-passing through the cascade, two velocity deficits appeared near the boundary layer contour in the downstream from about 60% chord-length. The first velocity deficit was caused by a periodic wake and the second one appeared after some delayed time. The second velocity deficit was interpreted as the results of reattachment of flow-separation. The higher reduced frequency decreased the duration time of separation appearance and the lesser losses of blade were resulted.

Numerical Study on the Unsteady Flow Characteristics under the Effect of Blade Leading Edge Modification in the 1st Stage of Axial Turbine (1단 터빈 내 앞전 변형의 영향 하에 공력 특성에 대한 비정상 수치해석적 연구)

  • Kim, Dae-Hyun;Min, Jae-Hong;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.22-27
    • /
    • 2009
  • The important problems that arise in the design and performance of the axial flow turbine are the prediction and control of secondary flows. Some progresses have been made on understanding flow conditions that occur when the inlet endwall boundary layer separates at the point in the endwall and rolls up into the horseshoe vortex. And the flows though an axial turbine tend to be extremely complex due to its inherent unsteady and viscous phenomena. The passing wakes generated from the trailing edge of the stator make an interaction with the rotor. Unsteady flow should be considered rotor/stator interactions. The main purpose of this research is control of secondary flow and improvement efficiency in turbine by leading edge modification in unsteady state. When the wake from the stator ran into the modified leading edge of the rotor, the leading edge generated the weak pressure fluctuation by complex passage flows. In conclusion, leading edge modification(bulb2) results in the reduced total pressure loss in the flow field.

Design of Horizontal Axis Tidal Current Power Turbine with Wake Analysis (수평축 조류발전 터빈 설계 및 후류 특성 분석)

  • Jo, Chul-Hee;Kim, Do-Youb;Lee, Kang-Hee;Rho, Yu-Ho;Kim, Kook-Hyun
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.92-100
    • /
    • 2011
  • With the increased demand of clean energy and global warming measures, the renewable energy development has been increased recently. The TCP (Tidal Current Power) is one of the ocean renewable energy sources. Having the high tidal energy source in Korea, there are many potential TCP sites with strong current speed. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system. The rotor performance is determined by various design parameters including number of blades, shape, sectional size, diameters and etc. However, the interactions between devices also contribute significantly to the energy production. The rotor performance considering the interaction needs to be investigated to predict the exact power in the farm. This paper introduces the optimum design of TCP turbine and the performance of devices considering the interference between rotors.

Effects of Rotor-Stator Blade Count Ratio on the Unsteady Aerodynamic Characteristics of a Cascade (동익과 정익의 블레이드 개수 비가 익렬의 비정상 공기역학적 특성에 미치는 영향에 대한 수치해석적 연구)

  • Kang D. J.;Jeon H. J.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.41-50
    • /
    • 2001
  • Effects of rotor-stator blade count ratio on the unsteady aerodynamic characteristics of a cascade was studied by using a Navier-Stokes code. Present Navier-Stokes code is a parallel code and works on a multi-cpu machine. It is based on the SIMPLE algorithm and uses QUICK scheme for convection terms and second order back difference for all temporal derivatives. Computations were carried out for two cases : case 1 is for 3 stator cascade passages subjected to two upstream wakes while case 2 is for 2 stator cascade passages subjected to three upstream wakes. Numerical solutions show that rotor-stator blade count ratio plays a significant role in the unsteady aerodynamic characteristics of the stator cascade. Case 2 shows smaller unsteady fluctuation than case 1, even if they show the same time averaged value. The smaller fluctuation of case 2 is believed due to strong interaction between unsteady vortices. The unsteady lift variation of case 2 is shown to have many high frequency fluctuations as more unsteady vortices travel around the cascade. The unsteady turbulent kinetic energy due to the upstream wake is also shown to decay faster through the cascade passage than in the free stream.

  • PDF

Behavior of Tip Vortex in a Propeller Fan (프로펠러팬에서의 Tip Vortex 거동)

  • Kim, Sung-Hyup;Furukawa, Masato;Inoue, Masahiro
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1377-1382
    • /
    • 2004
  • Flow fields in a half ducted propeller fan have been investigated by three-dimensional Reynolds-averaged Navier-Stokes (RANS) simulations and a vortex core identification technique. The simulation at the design operating condition shows that the tip vortex onset point is located at 30 percent tip chord of the suction surface on the blade tip. There is no interaction between the tip vortex and the adjacent blade, so that the tip vortex smoothly convects to the rotor exit. However, the high vorticity in the tip vortex causes the wake and the tip leakage flow to be twined around the tip vortex and to interact with the pressure surface of the adjacent blade. This flow behavior corresponds well with experimental results by Laser Doppler Velocimetry. On the contrary, the simulation at the low-flowrate operating condition shows that the tip vortex onset point is located at the 60 percent tip chord of the suction surface. In contrast to the design operating condition, the tip vortex grows almost tangential direction, and impinges directly on the pressure surface of the adjacent blade.

  • PDF

Instrumentation for Performance Test of Turbo Compressor (터보 압축기 성능시험을 위한 계측기기 선정)

  • Park, Tae-Choon;Kang, Young-Seok;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.46-52
    • /
    • 2008
  • The instrumentation was studied in order to measure aerodynamic performance and efficiency of a compressor as a component of a 5MW-class gas turbine for power generation. In case of an axial compressor, the distributions of static pressure on a casing can be obtained by averaging at each stage and those of total pressure and temperature in the flow field of the compressor can be measured with a Kiel temperature probe. In case of a centrifugal compressor, the static pressures at the hub and the tip, respectively, of an impeller exit are considerably different, so the pressures need to be measured at both positions and thereafter averaged. The distributions of static pressures in a diffuser and a deswirler are measured at ten positions along five streamlines in one pitch. In addition the flow field can be measured in detail by 5-hole Pitot tube in order to analyze the flow characteristics of the core flow region and wake region and the rotor-stator interaction of the compressor.

  • PDF

Aerodynamic Performance for Horizontal Axis Wind Turbine Model using Subsonic Wind Tunnel (풍동실험을 통한 수평축 풍력터빈 모델의 공력성능 연구)

  • Ryu, Ki-Wahn;Yoon, Seong-Jun;Lee, Chang-Su;Choy, Seong-Ok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.964-972
    • /
    • 2007
  • Wind turbine experiment was carried out for the horizontal axis wind turbine with the aerodynamically optimized blade. From the comparison of aerodynamic performance between upwind and downwind type wind turbine rotor, the measured torque fluctuation of the latter is larger than that of the former. This phenomenon is owing to the interaction of wake generated from support column and blades. The wind turbine model satisfies the design condition in that the measured result of the power coefficient at zero pitch angle shows maximum peak at the designed tip speed ratio, λ = 6. It also shows that the decrease in aerodynamic power due to negative pitch change is more sensitive than that of the same positive pitch change.