• Title/Summary/Keyword: Wafer Grinder

Search Result 7, Processing Time 0.021 seconds

Review for Features of Wafer In-feed Grinder Structure (실리콘 웨이퍼 단면 연삭기 구조물 특성평가)

  • Ha S.B.;Choi S.J.;Ahn D.K.;Kim I.S.;Choi Y.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.555-556
    • /
    • 2006
  • In recent years, the higher flatness level in wafer shape has been strictly demanded with a high integration of the semiconductor devices. It has become difficult for a conventional wafer preparing process to satisfy those demands. In order to meet those demands, surface grinding with in-feed grinder is adopted. In an in-feed grinding method, a chuck table fur fixing a semiconductor wafrr rotates on its rotation axis with a slight tilt angle to the rotation axis of a cup shaped grinding wheel and the grinding wheel in rotation moves down to grind the wafer. So, stability of the grinder structure is very important to aquire a wafer of good quality. This paper describes the features of the in-feed grinder and some FEM analysis results of the grinder structure.

  • PDF

Design Alterations of a Wafer Grinder for the Improved Stability (구조 안정성 향상을 위한 Wafer Grinder의 설계 개선)

  • Shin, Yun Ho;Ro, Seung Hoon;Yoon, Hyun Jin;Kil, Sa Geun;Kim, Young Jo;Lee, Dae Woong;Kim, Sang Hwa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.82-87
    • /
    • 2019
  • One of the most critical aspects of the semiconductor industry is the quality of the wafer surface. And the vibrations of wafer grinder are supposed to be the most dominant factors to damage the wafer surface quality. In this study, structure of a wafer grinder has been analyzed through experiments and computer simulations to figure out the main reasons of the vibrations. And the design alterations based on the analysis were applied to identify the effects of those alterations on the vibration suppression. The result shows that the design alterations can effectively suppress about 90% of the vibrations.

Design Alterations of a Grinder of Semiconductor Wafer for the Improved Stability (반도체 Wafer용 Grinder의 안정화 설계)

  • Kil, Sa Geun;Ro, Seung Hoon;Shin, Yun Ho;Kim, Young Jo;Kim, Geon Hyeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.91-96
    • /
    • 2017
  • One of the most critical aspects of the modern semiconductor industry is the quality of wafer surface, the roughness of which is mostly caused by the ingot slicing. And the grinding is supposed to be the main process to reduce the surface roughness. The vibrations of the disc surface grinder are the major problem to effectively achieve the required surface quality. In this study, the structure of a disc surface grinder was analyzed through the experiment and the computer simulation to investigate the dynamic characteristics of the machine, and further to alter the design for the improved stability. The result of the study shows that simple design alterations without alternating main body can effectively suppress the vibrations of the machine.

  • PDF

Design Alterations of a Semiconductor Wafer Edge Grinder for the Improved Stability (반도체 Wafer용 Edge Grinding Machine의 구조 안정화를 위한 설계 개선)

  • Park, Yu Ra;Ro, Seung Hoon;Kim, Young Jo;Kil, Sa Geun;Kim, Geon Hyeong;Shin, Yun Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.56-64
    • /
    • 2016
  • It is generally accepted that the surface quality of wafer edge is mostly damaged by the vibrations of the edge grinding machine. The surface quality of wafer edge is supposed to be the most dominant factor of the cracks, scratches, burrs and chips on the edge surfaces, which are the main defects of the wafers. In this study, the structure of a wafer edge grinder has been investigated through the frequency response experiment and the computer simulation to find ways to suppress the vibrations from the structure. The main reasons of the structural vibrations were analyzed. And further the design alterations were deduced from the results of the experiment and the simulation, and applied to the machine to check the effects of those alterations and to eventually improve the structural stability. The result shows that the machine can have much improved stability with relatively simple design changes.

The Trend of wafer Grinding Technology and Improvement of Machining Accuracy (웨이퍼 연삭 가공 기술의 동향 및 가공 정밀도 향상에 관한 연구)

  • 안대균;황징연;이재석;이용한;하상백;이상직
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.20-23
    • /
    • 2002
  • In silicon wafer manufacturing process, the grinding process has been adopted to improve the quality of wafer such as flatness, roughness and so on. This paper describes the effect of grinding process on the surface quality of wafer. The experiments are carried out by high precision in fred grinder with air bearing spindle. The relationship between the inclination of chuck table and the flatness of wafer is investigated, and the effect of grinding conditions including wheel speed, table speed, and feed rate on damage depth and roughness of wafer is also investigated. The experimental results show that there is close relationship between the inclination of the chuck table and the flatness of wafer, and the grinding conditions within this paper little affect the flatness of wafer and relatively high affect the damage depth of wafer.

  • PDF

A Study on Precision Infeed Grinding for the Silicon Wafer (실리콘 웨이퍼의 고정밀 단면 연삭에 관한 연구)

  • Ahn D.K.;Hwang J.Y.;Choi S.J.;Kwak C.Y.;Ha S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1-5
    • /
    • 2005
  • The grinding process is replacing lapping and etching process because significant cost savings and performance improvemnets is possible. This paper presents the experimental results of wafer grinding. A three-variable two-level full factorial design was employed to reveal the main effects as well as the interaction effects of three process parameters such as wheel rotational speed, chuck table rotational speed and feed rate on TTV and STIR of wafers. The chuck table rotaional speed was a significant factor and the interaction effects was significant. The ground wafer shape was affected by surface shape of chuck table.

  • PDF

The Optimum Grinding Condition Selection of Grinding System (연삭시스템의 최적연삭가공조건)

  • Lee S.W.;Choi Y.J.;Hoe N.H.;Choi H.Z.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.563-564
    • /
    • 2006
  • In silicon wafer manufacturing process, the grinding process has been adopted to improve the flatness of water. The grinding of wafer is usually used by the infeed grinding machine. Grinding conditions are spindle speed, feed speed, rotation speed, grinding stone etc. But grinding condition selection and analysis is so difficult in grinding machine. In the intelligent grinding system based on knowledge many researchers have studied expert system, neural network, fuzzy etc. In this paper we deal grinding condition selection method, Taguchi method and Genetic Analysis.

  • PDF