• 제목/요약/키워드: WTRP

검색결과 4건 처리시간 0.016초

Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models

  • Ozcan, Giyasettin;Kocak, Yilmaz;Gulbandilar, Eyyup
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.275-282
    • /
    • 2017
  • The aim of this study is to build Machine Learning models to evaluate the effect of blast furnace slag (BFS) and waste tire rubber powder (WTRP) on the compressive strength of cement mortars. In order to develop these models, 12 different mixes with 288 specimens of the 2, 7, 28, and 90 days compressive strength experimental results of cement mortars containing BFS, WTRP and BFS+WTRP were used in training and testing by Random Forest, Ada Boost, SVM and Bayes classifier machine learning models, which implement standard cement tests. The machine learning models were trained with 288 data that acquired from experimental results. The models had four input parameters that cover the amount of Portland cement, BFS, WTRP and sample ages. Furthermore, it had one output parameter which is compressive strength of cement mortars. Experimental observations from compressive strength tests were compared with predictions of machine learning methods. In order to do predictive experimentation, we exploit R programming language and corresponding packages. During experimentation on the dataset, Random Forest, Ada Boost and SVM models have produced notable good outputs with higher coefficients of determination of R2, RMS and MAPE. Among the machine learning algorithms, Ada Boost presented the best R2, RMS and MAPE values, which are 0.9831, 5.2425 and 0.1105, respectively. As a result, in the model, the testing results indicated that experimental data can be estimated to a notable close extent by the model.

Application of expert systems in prediction of flexural strength of cement mortars

  • Gulbandilar, Eyyup;Kocak, Yilmaz
    • Computers and Concrete
    • /
    • 제18권1호
    • /
    • pp.1-16
    • /
    • 2016
  • In this study, an Artificial Neural Network (ANN) and Adaptive Network-based Fuzzy Inference Systems (ANFIS) prediction models for flexural strength of the cement mortars have been developed. For purpose of constructing this models, 12 different mixes with 144 specimens of the 2, 7, 28 and 90 days flexural strength experimental results of cement mortars containing pure Portland cement (PC), blast furnace slag (BFS), waste tire rubber powder (WTRP) and BFS+WTRP used in training and testing for ANN and ANFIS were gathered from the standard cement tests. The data used in the ANN and ANFIS models are arranged in a format of four input parameters that cover the Portland cement, BFS, WTRP and age of samples and an output parameter which is flexural strength of cement mortars. The ANN and ANFIS models have produced notable excellent outputs with higher coefficients of determination of $R^2$, RMS and MAPE. For the testing of dataset, the $R^2$, RMS and MAPE values for the ANN model were 0.9892, 0.1715 and 0.0212, respectively. Furthermore, the $R^2$, RMS and MAPE values for the ANFIS model were 0.9831, 0.1947 and 0.0270, respectively. As a result, in the models, the training and testing results indicated that experimental data can be estimated to a superior close extent by the ANN and ANFIS models.

IEEE 802.11 무선 랜에서의 토큰링 기반의 매체 접속 제어 프로토콜 (A Token-Ring-Based MAC Protocol in IEEE 802.11 WLANs)

  • 이은국;이승형
    • 한국통신학회논문지
    • /
    • 제39B권1호
    • /
    • pp.38-40
    • /
    • 2014
  • 본 논문에서는 인프라스트럭처 네트워크에서 토큰링 기법을 활용하여 지연시간 절감과 성능향상을 달성하고자 한다. AP(Access Point)는 노드의 A-ID (Association-ID)를 ACK 프레임에 담아 순차적으로 전송함으로써 토큰 패싱 효과를 준다. 이는 매체접속에 필요한 시간을 최대한 단축시키고, 그에 따라 전송률 또한 향상시킨다. 또한, AP는 큐 테이블을 생성 및 관리 하여 AP에 의해 결합된 노드 중에서 큐 정보가 가장 큰 노드에게 더 많은 매체 접속 기회를 제공한다. 이는 노드들의 큐의 포화 정도에 따라 균등하게 매체 접속 기회를 제공한다.

군집 드론망을 통한 IoT 서비스를 위한 보안 프레임워크 연구 (A Study on the Security Framework in IoT Services for Unmanned Aerial Vehicle Networks)

  • 신민정;김성운
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.897-908
    • /
    • 2018
  • In this paper, we propose a security framework for a cluster drones network using the MAVLink (Micro Air Vehicle Link) application protocol based on FANET (Flying Ad-hoc Network), which is composed of ad-hoc networks with multiple drones for IoT services such as remote sensing or disaster monitoring. Here, the drones belonging to the cluster construct a FANET network acting as WTRP (Wireless Token Ring Protocol) MAC protocol. Under this network environment, we propose an efficient algorithm applying the Lightweight Encryption Algorithm (LEA) to the CTR (Counter) operation mode of WPA2 (WiFi Protected Access 2) to encrypt the transmitted data through the MAVLink application. And we study how to apply LEA based on CBC (Cipher Block Chaining) operation mode used in WPA2 for message security tag generation. In addition, a modified Diffie-Hellman key exchange method is approached to generate a new key used for encryption and security tag generation. The proposed method and similar methods are compared and analyzed in terms of efficiency.