• Title/Summary/Keyword: WTGS

Search Result 33, Processing Time 0.027 seconds

Evaluation of Power Performance by Anemometer on WTGS (풍력발전기 너셀에 장착된 풍속계를 이용한 출력성능 평가)

  • Kim, Soo-Sang;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.303-310
    • /
    • 2012
  • We carried out the power performance evaluation for 1.5 MW${\times}$2 by using anemometer installed on WTGS(Wind Turbine Generator System) in the wind farm at Shi-hwa bang-a-mu-ri. In this paper, we compared and analyzed the performance of guaranteed output and measured output of WTGS which includes output curve, output coefficient, AEP(Annual Energy Product) and availability, etc.. The power performance of WTGS was optimized in the low wind speed sections(3 m/s ~ 10 m/s) and the measured output was more produced by AEP 109 % and availability 112 % than the guaranteed output. In addition, we could also cut the high cost of testing WTGS performance by using anemometer as a substitute for weather mast.

A study on the maximum penetration limit of wind power considering output limit of WTGs (풍력발전기 출력제한을 고려한 풍력한계용량 산정에 관한 연구)

  • Kim, Hyeong-Taek;Myeong, Ho-San;Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.23-31
    • /
    • 2011
  • The wind energy is one of the most prospective resources in renewable energy. However, the WTGS shouldn't be installed indiscriminately because the power system can be negatively influenced by a variable and uncertain nature of the wind energy. It is the reason why it has to be limited to install the WTGS thoughtlessly mentioned above that support the importance of the maximum penetration limit of wind power. It may required that power system operators suggests a new way of power system operation as percentage of the WTGS increase in the existing power system. The wind power is fixed in a limited area, so using rate of the wind power will be increased by installing additional WTGS. In this paper, we have studied on economic evaluation of the wind capacity increased by restricting the output of the WTGS as the way to increase the wind capacity.

Method of Minimizing ESS Capacity for Mitigating the Fluctuation of Wind Power Generation System (풍력발전의 출력 변동 저감을 위한 ESS 최소용량 산정기법)

  • Kim, Jae-Hong;Kang, Myeong-Seok;Kim, Eel-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.119-125
    • /
    • 2011
  • In this paper, we have studied about minimizing the Energy Storage System (ESS) capacity for mitigating the fluctuation of Wind Turbine Generation System (WTGS) by using Electric Double Layer Capacitor (EDLC) and Battery Energy Storage System (BESS). In this case, they have some different characteristics: The EDLC has the ability of generating the output power at high frequency. Thus, it is able to reduce the fluctuation of WTGS in spite of high cost. The BESS, by using Li-Ion battery, takes the advantage of high energy density, however it is limited to use at low frequency response. To verify the effectiveness of the proposed method, simulations are carried out with the actual data of 2MW WTGS in case of worst fluctuation of WTGS is happened. By comparing simulation results, this method shows the excellent performance. Therefore, it is very useful for understanding and minimizing the ESS capacity for mitigating the fluctuation of WTGS.

Load Calculation of a 750 kW Direct-drive Wind Turbine Generator System (750kW급 직접구동형 풍력발전기의 부하계산)

  • Sohn, Y.U.;Park, I.S.;Kwon, S.J.;Kim, Y.C.;Son, J.B.;Kim, K.R.;Chung, C.W.;Chun, J.H.;Ryu, J.Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.649-655
    • /
    • 2003
  • Load calculation is indispensable for the construction of a large wind turbine generator system (WTGS). In procedures of load calculation, all conditions affecting to WTGS such as environment of site, operation, transport and installation have to be considered systematically. So the certification of WTGS is issued by assuring the load calculation. This work shows the generals of load calculation briefly and introduces the characteristics and results of load calculations for the 750 kW direct-drive WTGS (KBP-750D) which is under development by the consortium of POSTECH and UNISON.

  • PDF

Pitch Control for Wind Turbine Generator System (풍력 발전시스템 피치 제어에 관한 연구)

  • Park, Jong-Hyeok;No, Tae-Su;Mun, Jeong-Hui;Kim, Ji-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.25-34
    • /
    • 2006
  • In this paper, a method of designing the pitch control algorithm for the wind turbine generator system (WTGS) and results of nonlinear simulation are presented. For this, the WTGS is treated as a multibody system and the blade element and momentum theory are adopted to model the aerodynamic force and torque acting the rotor blades. For the purpose of controller design, the WTGS is approximated to 1 DOF system using the fact that the WTGS is eventually a constrained multibody system. Then a classical PID controller is designed and used to regulate the rotational speed of the generator. FORTRAN based nonlinear simulation program is written and used to evaluate the performance of the proposed controller at the various wind scenario and operational modes.

Development of Performance Analysis S/W for Wind Turbine Generator System (풍력발전시스템 성능 해석 S/W 개발에 관한 연구)

  • Mun, Jung-Heu;No, Tae-Soo;Kim, Ji-Yon;Kim, Sung-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.202-209
    • /
    • 2008
  • Application of wind turbine generator system (WTGS) needs researches for performance prediction, pitch control, and optimal operation method. Recently a new type WTGS is developed and under testing. The notable feature of this WTGS is that it consists of two rotor systems positioned horizontally at upwind and downwind locations, and a generator installed vertically inside the tower. In this paper, a nonlinear simulation software developed for the performance prediction of the Dual Rotor WTGS and testing of various control algorithm is introduced. This software is hybrid in the sense that FORTRAN is extensively used for the purpose of computation and Matlab/Simulink provides a user friendly GUI-like environment.

Modeling and Analysis of V47-660 kW Wind Turbine Generator System in Jeju Wind Farm (제주 풍력발전 단지의 V47-660 kW 시스템의 모델링 및 해석)

  • Kim, Eel-Hwan;Kang, Geong-Bo;Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.37-44
    • /
    • 2003
  • This paper presents the modeling and analysis of V47-660 kW wind turbine generation system(WTGS) in Jeju wind farm using Psim program. Generally, WTGS is composed of complicated machinery. So it is very difficult to present the mathematic model. This means that WTGS has a nonlinear system. Using the real output data from V47 WTGS for one year, it is simply possible to express the rotor and gear coupling system as a torque generator according to wind speed. Also, the modeling of electrical system can be able to present using the data sheet from the company. To analyze the proposed method, results of computer simulation using Psim program are presented to support the discussion.

A Study of the Mitigating Effect Comparison of Voltage Sags by WTG Types Based on the Concept of Area of Vulnerability (타입별 풍력 발전기 설치에 따른 민감 부하의 순간전압강하 저감 효과 비교 분석 연구)

  • Park, Se-Jun;Yoon, Min-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1682-1688
    • /
    • 2017
  • In modern society, the number of industrial customers using equipment sensitive particularly to voltage sags is rapidly increasing. As voltage sags can cause loss of information as well as false operation of the control device, it results in the vast economic damage in industrial processes. One way to mitigate voltage sags in the sensitive loads is the installation of distributed generation (DGs) on the periphery of these loads. In addition, renewable energy sources are currently in the spot light as the potential solution for the energy crisis and environmental issues. In particular, wind power generation which is connected to a grid is rising rapidly because it is energy efficient and also economically feasible compared to other renewable energy sources. On the basis of the above information, in this paper, with Wind Turbine Generators (WTGs) installed nearby the sensitive load, the analysis of the mitigating effect comparison by types of WTGs is performed using voltage sag assessment on the IEEE-30 bus test system. That is, the areas of vulnerability according to types of WTGs are expected to be different by how much reactive power is produced or consumed as WTG reactive power capability is related to the types of WTGs. Using the concept of 'Vulnerable area' with the failure rate for buses and lines, the annual number of voltage sags at the sensitive load with the installation of WTGs per type is studied. This research will be anticipated to be useful data when determining the interconnection of wind power generation in the power system with the consideration of voltage sags.

Reliability Evaluation of a Distribution System with wind Turbine Generators Based on the Switch-section Partitioning Method

  • Wu, Hongbin;Guo, Jinjin;Ding, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.575-584
    • /
    • 2016
  • Considering the randomness and uncertainty of wind power, a reliability model of WTGs is established based on the combination of the Weibull distribution and the Markov chain. To analyze the failure mode quickly, we use the switch-section partitioning method. After defining the first-level load zone node, we can obtain the supply power sets of the first-level load zone nodes with each WTG. Based on the supply sets, we propose the dynamic division strategy of island operation. By adopting the fault analysis method with the attributes defined in the switch-section, we evaluate the reliability of the distribution network with WTGs using a sequential Monte Carlo simulation method. Finally, using the IEEE RBTS Bus6 test system, we demonstrate the efficacy of the proposed model and method by comparing different schemes to access the WTGs.

Modeling and Analysis of Wind Turbine Generating System at Haeng-Won in Jeju Island (제주 행원 풍력발전 시스템의 모델링 및 해석)

  • Jeon Young-Jin;Kim Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.563-566
    • /
    • 2002
  • This paper presents the modeling and analysis of wind turbine generating system(WTGS) using doubly fed induction machine as a generator Generally, wind turbine generating system is composed of complicated machinery. So it is very difficult to present the mathematic model. This means that WTGS has a nonlinear system. Using the real output data from the WTGS for one year, it is simply possible to express the rotor and gear coupling system as a torque generator according to wind speed. Also, the modeling of electrical system can be able to present using the data sheet from the company. To analyze the proposed method, computer simulation using Psim program are presented to support the discussion.

  • PDF