• Title/Summary/Keyword: WT (Wavelet Transform)

Search Result 104, Processing Time 0.021 seconds

Multispectral Image Compression Using Classified Interband Bidirectional Prediction and Extended SPHT (영역별 대역간 양방향 예측과 확장된 SPIHT를 이용한 다분광 화상데이터의 압축)

  • Kim, Seung-Jin;Ban, Seong-Won;Kim, Byung-Ju;Park, Kyung-Nam;Kim, Young-Choon;Lee, Kuhn-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.5
    • /
    • pp.486-493
    • /
    • 2002
  • In this paper, we proposed the effective multispectral image compression method using CIBP(classified interband bidrectional prediction) and extended SPIHT(set partition in hierarchical trees) in wavelet domain. We determine separately feature bands that have the highest correlation with other bands in the visible range and in the infrared range of wavelengths. Feature bands are coded to remove the spatial redundancy with SPIHT in the wavelet domain. Prediction bands that have high correlation with feature bands are wavelet transformed and they are classified into one of three classes considering reflection characteristics of the baseband. For Prediction bands, CIBP is performed to reduce the spectral redundancy. for the difference bands between prediction bands and the predicted bands, They are ordered to upgrade the compression efficiency of extended SPIHT with the largest error magnitude. The arranged bands are coded to compensate the prediction error with extended SPIHT. Experiments are carried out on the multispectral images. The results show that the proposed method reconstructs higher quality images than images reconstructed by the conventional methods at the same bit rate.

Detection of High-Velocity Impact Damage in Composite Laminates Using PVDF Sensor Signals (고분자 압전 필름 센서를 이용한 복합재 적층판의 고속 충격 손상 탐지)

  • Kim Jin-Won;Kim In-Gul
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.26-33
    • /
    • 2005
  • The mechanical properties of composite materials may severely degrade in the presence of damage. Especially, the high-velocity impact such as bird strike, a hailstorm, and a small piece of tire or stone during high taxing, can cause considerable damage to the structures and sub-system in spite of a very small mass. However, it is not easy to detect the damage in composite plates using a single technique or any conventional methods. In this paper, the PVDF(polyvinylidene fluoride) film sensors were used for monitoring high-velocity impact damage initiation and propagation in composite laminates. The WT(wavelet transform) and STFT(short time Fourier transform) are used to decompose the sensor signals. A ultrasonic C-scan and a digital microscope are also used to examine the extent of the damage in each case. This research shows how various sensing techniques, PVDF sensor in particular, can be used to characterize high-velocity impact damage in advanced composite.

Signal Analysis for Detecting Abnormal Breathing (비정상 호흡 감지를 위한 신호 분석)

  • Kim, Hyeonjin;Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.249-254
    • /
    • 2020
  • It is difficult to control children who exhibit negative behavior in dental clinics. Various methods are used for preventing pediatric dental patients from being afraid and for eliminating the factors that cause psychological anxiety. However, when it is difficult to apply this routine behavioral control technique, sedation therapy is used to provide quality treatment. When the sleep anesthesia treatment is performed at the dentist's clinic, it is challenging to identify emergencies using the current breath detection method. When a dentist treats a patient that is under the influence of an anesthetic, the patient is unconscious and cannot immediately respond, even if the airway is blocked, which can cause unstable breathing or even death in severe cases. During emergencies, respiratory instability is not easily detected with first aid using conventional methods owing to time lag or noise from medical devices. Therefore, abnormal breathing needs to be evaluated in real-time using an intuitive method. In this paper, we propose a method for identifying abnormal breathing in real-time using an intuitive method. Respiration signals were measured using a 3M Littman electronic stethoscope when the patient's posture was supine. The characteristics of the signals were analyzed by applying the signal processing theory to distinguish abnormal breathing from normal breathing. By applying a short-time Fourier transform to the respiratory signals, the frequency range for each patient was found to be different, and the frequency of abnormal breathing was distributed across a broader range than that of normal breathing. From the wavelet transform, time-frequency information could be identified simultaneously, and the change in the amplitude with the time could also be determined. When the difference between the amplitude of normal breathing and abnormal breathing in the time domain was very large, abnormal breathing could be identified.

Identification of Impact Damage in Smart Composite Laminates Using PVDF Sensor Signals (고분자 압전센서 신호를 이용한 스마트 복합적층판의 충격 손상 규명)

  • Lee, Hong-Young;Kim, In-Gul;Park, Chan-Yik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.51-59
    • /
    • 2004
  • An experimental procedure to identify failure modes of impact damage using sensor signals and to analyze their general features is examined. A series of low-velocity impact tests from low energy to damage-induced high energy were performed on the instrumented drop weight impact tester to monitor the stress wave signals due to failure modes such as matrix cracking, delamination, and fiber breakage. The wavelet transform(WT) and Short Time Fourier Transform(STFT) are used to decompose the piezoelectric sensor signals in this study. The extent of the damage in each case was examined by means of a conventional ultrasonic C-scan. The PVDF sensor signals are shown to carry important information regarding the nature of the impact process that can be extracted from the careful signal processing and analysis.