• Title/Summary/Keyword: WPT

Search Result 183, Processing Time 0.024 seconds

Magnetic-Field-Model and Circuit-Model Based Analysis of Three-Phase Magnetically Coupled Resonant Wireless Power Transfer Systems with Cylinder-Shaped Coils

  • Chen, Xuling;Fu, Xiewei;Jiang, Chong;Pei, Cunhui;Liu, Fuxin
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1154-1164
    • /
    • 2018
  • In single-phase magnetically coupled resonant (MCR) wireless power transfer (WPT) systems, the transfer characteristics, including the output power and transfer efficiency, are significantly influenced by the spatial scales of its coils. As a potential alternative, a three-phase MCR WPT system with cylinder-shaped coils that are excited in a voltage-fed manner has been proposed to satisfy the requirements of compact space. This system adopts a phase-shifted angle control scheme to generate a rotating magnetic field and to realize omnidirectional WPT that is immune to spatial scales. The magnetic field model and equivalent circuit models are built to holistically analyze the system characteristics under different angular misalignments. Research results show that the transfer characteristics can be improved by modulating the phase-shifted angle in each phase. Experiments have also been carried out to evaluate the accuracy of the theoretical analysis and to confirm the validity of the system modeling method.

Improved Particle Swarm Optimization Algorithm for Adaptive Frequency-Tracking Control in Wireless Power Transfer Systems

  • Li, Yang;Liu, Liu;Zhang, Cheng;Yang, Qingxin;Li, Jianxiong;Zhang, Xian;Xue, Ming
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1470-1478
    • /
    • 2018
  • Recently, wireless power transfer (WPT) via coupled magnetic resonances has attracted a lot of attention owing to its long operation distance and high efficiency. However, the WPT systems is over-coupling and a frequency splitting phenomenon occurs when resonators are placed closely, which leads to a decrease in the transfer power. To solve this problem, an adaptive frequency tracking control (AFTC) was used based on a closed-loop control scheme. An improved particle swarm optimization (PSO) algorithm was proposed with the AFTC to track the maximum power point in real time. In addition, simulations were carried out. Finally, a WPT system with the AFTC was demonstrated to experimentally validate the improved PSO algorithm and its tracking performance in terms of optimal frequency.

Array Topology of Microwave Wireless Power Transmission on Electronic Power System (전력계통 연계를 대비한 마이크로파 무선전력 송수신기 에레이 구성 고찰)

  • Lee, Dongho
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.88-91
    • /
    • 2015
  • Wireless power transmission (WPT) is a technology using free space as a conductor for transmitting electric power, which aims to transfer not just the transmission signal but also the electrical energy itself. This paper takes issue with the microwave wireless transmission technology utilizing in long-distance transmission. To construct the WPT system, several components are needed, such as RF Oscillator which converts AC power to RF through DC status, high gain antenna and RF rectifier that converts RF back to DC. The array topology is good a candidate for wide use. The objective of this research is to study the efect of the WPT systmem on electric power system.

Eddy Loss Analysis and Parameter Optimization of the WPT System in Seawater

  • Zhang, Ke-Han;Zhu, Zheng-Biao;Du, Luo-Na;Song, Bao-Wei
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.778-788
    • /
    • 2018
  • Magnetic resonance wireless power transfer (WPT) in the marine environment can be utilized in many applications. However, energy loss in seawater through eddy loss (EL) is another consideration other than WPT in air. Therefore, the effect of system parameters on electric field intensity (EFI) needs to be measured and ELs calculated to optimize such a system. In this paper, the usually complicated analytical expression of EFI is simplified to the product of frequency, current, coil turns, and a coefficient to analyze the eddy current loss (ECL). Moreover, as the calculation of ECL through volume integral is time-consuming, the equivalent eddy loss impedance (EELI) is proposed to help designers determine the optimum parameters quickly. Then, a power distribution model in seawater is conceived based on the introduction of EELI. An optimization flow chart is also proposed according to this power distribution model, from which a prototype system is developed which can deliver 100 W at 90% efficiency with a gap of 30 mm and a frequency of 107.1 kHz.

SVM-based Drone Sound Recognition using the Combination of HLA and WPT Techniques in Practical Noisy Environment

  • He, Yujing;Ahmad, Ishtiaq;Shi, Lin;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5078-5094
    • /
    • 2019
  • In recent years, the development of drone technologies has promoted the widespread commercial application of drones. However, the ability of drone to carry explosives and other destructive materials may bring serious threats to public safety. In order to reduce these threats from illegal drones, acoustic feature extraction and classification technologies are introduced for drone sound identification. In this paper, we introduce the acoustic feature vector extraction method of harmonic line association (HLA), and subband power feature extraction based on wavelet packet transform (WPT). We propose a feature vector extraction method based on combined HLA and WPT to extract more sophisticated characteristics of sound. Moreover, to identify drone sounds, support vector machine (SVM) classification with the optimized parameter by genetic algorithm (GA) is employed based on the extracted feature vector. Four drones' sounds and other kinds of sounds existing in outdoor environment are used to evaluate the performance of the proposed method. The experimental results show that with the proposed method, identification probability can achieve up to 100 % in trials, and robustness against noise is also significantly improved.

Cooperative Nano Communication in the THz Gap Frequency Range using Wireless Power Transfer

  • Samarasekera, A. Chaminda J.;Shin, Hyundong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5035-5057
    • /
    • 2019
  • Advancements in nanotechnology and novel nano materials in the past decade have provided a set of tools that can be used to design and manufacture integrated nano devices, which are capable of performing sensing, computing, data storing and actuation. In this paper, we have proposed cooperative nano communication using Power Switching Relay (PSR) Wireless Power Transfer (WPT) protocol and Time Switching Relay (TSR) WPT protocol over independent identically distributed (i.i.d.) Rayleigh fading channels in the Terahertz (THz) Gap frequency band to increase the range of transmission. Outage Probability (OP) performances for the proposed cooperative nano communication networks have been evaluated for the following scenarios: A) A single decode-and-forward (DF) relay for PSR protocol and TSR protocol, B) DF multi-relay network with best relay selection (BRS) for PSR protocol and TSR protocol, and C) DF multi-relay network with multiple DF hops with BRS for PSR protocol and TSR protocol. The results have shown that the transmission distance can be improved significantly by employing DF relays with WPT. They have also shown that by increasing the number of hops in a relay the OP performance is only marginally degraded. The analytical results have been verified by Monte-Carlo simulations.

Establishing Best Power Transmission Path using Receiver Based on the Received Signal Strength

  • Eom, Jeongsook;Son, Heedong;Park, Yongwan
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.15-23
    • /
    • 2017
  • Wireless power transmission (WPT) for wireless charging is currently attracting much attention as a promising approach to miniaturize batteries and increase the maximum total range of an electric vehicle. The main advantage of the laser power beam (LPB) approach is its high power transmission efficiency (PTE) over long distance. In this paper, we present the design of a laser power beam based WPT system, which has a best WPT channel selection technique at the receiver end when multiple power transmitters and single power receiver are operated simultaneously. The transmitters send their transmission channel information via optically modulated laser pulses. The receiver uses the received signal strength indicator and digitized data to choose an optimum power transmission path. We modeled a vertical multi-junction photovoltaic cell array, and conducted an experiment and simulation to test the feasibility of this system. From the experimental result, the standard deviation between the mathematical model and the measured values of normalized energy distribution is 0.0052. The error between the mathematical model and measured values are acceptable, thus the validity of the model is verified.

Operation of battery-less and wireless sensor using magnetic resonance based wireless power transfer through concrete

  • Kim, Ji-Min;Han, Minseok;Lim, Hyung Jin;Yang, Suyoung;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.631-646
    • /
    • 2016
  • Although the deployment of wireless sensors for structural sensing and monitoring is becoming popular, supplying power to these sensors remains as a daunting task. To address this issue, there have been large volume of ongoing energy harvesting studies that aimed to find a way to scavenge energy from surrounding ambient energy sources such as vibration, light and heat. In this study, a magnetic resonance based wireless power transfer (MR-WPT) system is proposed so that sensors inside a concrete structure can be wirelessly powered by an external power source. MR-WPT system offers need-based active power transfer using an external power source, and allows wireless power transfer through 300-mm thick reinforced concrete with 21.34% and 17.29% transfer efficiency at distances of 450 mm and 500 mm, respectively. Because enough power to operate a typical wireless sensor can be instantaneously transferred using the proposed MR-WPT system, no additional energy storage devices such as rechargeable batteries or supercapacitors are required inside the wireless sensor, extending the expected life-span of the sensor.

Omnidirectional Resonator in Three-Dimensional using a Globular Structure for Wireless Power Transfer (공 모양의 구조를 이용한 무선 전력 전송용 3차원 전 방향 공진기)

  • Kim, Donggeon;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.22-26
    • /
    • 2016
  • In this paper, using the globular structure designed and implemented for the transmitter and the receiver resonant wireless power transfer(WPT). The coil of the transmitter was proposed to emit a magnetic energy in three-dimensional space by winding a ball shape. Each side of the transmitter has been designed to obtain a high Q value by a spiral structure. This solves the problem that the transfer efficiency decreases rapidly depending on the location in the conventional WPT. The resonance frequency is used 6.78 MHz and the distance between the trasnitter and the receiver is 200 mm. The transfer efficiency of the proposed WPT system is higher than 40% at all direction.

Extraction Solution for the Coupling Coefficient at the Magnetically Coupled Wireless Power Transmission (자계 결합 무선 전력 전송에서의 결합 계수 추출 방법)

  • Kim, Gun-Young;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1073-1078
    • /
    • 2012
  • This paper presented the extraction solution for the coupling coefficient at the magnetically coupled wireless power transmission(WPT) system through the analysis of its equivalent circuit considering the loss. The conventional extraction solution using coupled mode theory is generalized employing the extracted solution considering the load resistance. Consequently, the measuring process of extracting coupling coefficient becomes convenient since the even/odd mode analysis is not necessary. Furthermore, the coupling coefficient obtained from the induced extraction method was in excellent agreement with the coupling coefficient obtained using the ratio of magnetic flux passing through the two loops. The extraction of the accurate coupling coefficient at the magnetically coupled WPT is an essential work to analyze and optimize the WPT system.