• Title/Summary/Keyword: WORK OF ADHESION

Search Result 342, Processing Time 0.025 seconds

Development of Cement Liquid Waterproofing Spouting Equipment (시멘트 액체방수 뿜칠장비의 개발)

  • Kim, Han-Sic;Ha, Jung-Soo;Lee, Young-Do
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.145-146
    • /
    • 2022
  • The demand for a construction method capable of securing a safety environment and improving quality is increasing. There is a high risk of falling when working at a high place in an environment where it is difficult to secure visibility, such as an underground space, and there is a risk of falling if cement liquid waterproof materials are transferred to the top of the scaffold by manpower. In addition, when working on a high place in a poor environment, the quality uniformity of the upper part of the wall is deteriorated. In addition, as waterproof technicians gradually age and decrease, it is difficult to secure them, so it is urgent to prepare countermeasures against the shortage of waterproof technicians. Therefore, the purpose of this study is to develop cement liquid waterproof spouting construction equipment that can secure uniform quality of construction areas to prevent accidents and ensure safety of workers, improve work efficiency and quality due to improvement of work environment. The adhesion performance of the cement liquid waterproof material could be improved by about 20% in accordance with the use of the equipment.

  • PDF

Experimental Investigation of Friction and Wear Characteristics of O-Ring (O-ring의 마찰, 마모 특성에 관한 실험적 고찰)

  • Oh, Jun-Chul;Kim, Dae-Eun;Kim, Hyun-Jun;Kim, Mun-Hwan;Kim, Chun-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1125-1131
    • /
    • 2009
  • O-rings are commonly used in machines as a seal. Due to prolonged use the surface of an O-ring can degrade which can lead to leakage as well as contamination. Damage of O-rings used in vacuum applications such as sputter is caused by various mechanisms. Particles detached from the O-ring may cause significant problems on the performance of the system in the vacuum chamber. Therefore, understanding the tribological behavior of O-rings is important to tackle the damage caused by repeated contact. In this work, FKM rubber was used for friction and wear tests conducted to investigate the tribological behavior of O-rings. A reciprocating type of a tribo-tester was used for the tests. The friction coefficient between the steel ball and the FKM specimen was quite high. Also, in order to identify the wear behavior, the surface of the FKM specimen was characterized using both optical and scanning electron microscopes. Evidence of wear due to adhesion and extrusion could be found. The results of this work will aid in improving the durability of O-rings.

Determination of Contact Area of Cylindrical Nanowire using MD Simulation (MD 시뮬레이션을 이용한 실린더 형태 나노와이어의 접촉면적에 관한 연구)

  • Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • Contact between solid surfaces is one of the most important factors that influence dynamic behavior in micro/nanoscale. Although numerous theories and experimental results on contact behavior have been proposed, a thorough investigation for nanomaterials is still not available owing to technical difficulties. Therefore, molecular dynamics simulation was performed to investigate the contact behavior of nanomaterials, and the application of conventional contact theories to nanoscale was assessed in this work. Particularly, the contact characteristics of cylindrical nanowires were examined via simulation and contact theories. For theoretical analysis, various contact models were utilized and work of adhesion, Hamaker constant and elastic modulus those are required for calculation of the models were obtained from both indentation simulation and tensile simulation. The contact area of the cylindrical nanowire was assessed directly through molecular dynamics simulation and compared with the results obtained from the theories. Determination of the contact area of the nanowires was carried out via simulation by counting each atom, which is within the equilibrium length. The results of the simulation and theoretical calculations were compared, and it was estimated that the discrepancy in the results calculated between the simulation and the theories was less than 10 except in the case of the smallest nanowires. As the result, it was revealed that contact models can be effectively utilized to assess the contact area of nanomaterials.

Application of CFD-VOF Model to Autonomous Microfluidic Capillary System (마이크로 모세관 유동 해석을 위한 CFD-VOF 모텔 응용)

  • Jeong J.H.;Im Y.H.;Han S.P.;Suk J.W.;Kim Y.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.224-229
    • /
    • 2004
  • The objective of this work is not only to perform feasibility studies on the CFD (computational fluid dynamics) analysis for the capillary system design but also to provide an enhanced understanding of the autonomous capillary flow. The capillary flow is evaluated by means of the commercial CFD software of FLUENT, which includes the VOF (volume-of-fluid) model for multiphase flow analysis. The effect of wall adhesion at fluid interfaces in contact with rigid boundaries is considered in terms of static contact angle. Feasibility studies are first performed, including mesh-resolution influence on pressure profile, which has a sudden increase at the liquid/gas interface. Then we perform both 2D and 3D simulations and examine the transient nature of the capillary flow. Analytical solutions are also derived for simple cases and compared with numerical results. Through this work, essential information on the capillary system design is brought out. Our efforts and initial success in numerical description of the microfluidic capillary flows enhance the fundamental understanding of the autonomous capillary flow and will eventually pave the road for full-scale, computer-aided design of microfluidic networks.

  • PDF

A Study on the Development of Sensor-Based Smart Wappen System -Focus on UV Sensor and Gas Sensor-

  • Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.22 no.6
    • /
    • pp.94-104
    • /
    • 2018
  • The objective of this study was to develop a wearable systems that protect users, based on sensors that are easy to use, from accidents caused by harmful gases in the operator's poor working environment or the risk of ultraviolet rays during outdoor activities. By developing smart wappen with Light Emitting Diode (LED) light alarm function including UV sensor and gas sensor and central processing unit, systems that are applied to daily wear and work clothes to explore the possibility of user-centered, harmful environment monitoring products in real time were proposed. Each sensor was applied to sportswear and work clothes and the wappen system consisted of lightweight and thin form as a whole. Wappen to cover the device had one sheet cover on the front and another cover from the inside to form a sandwich like formation. Wappen was made in the same form as regular clothes that doesn't damage the exterior then a removable wappen system was developed using Velcro and snap methods to enable the separation of device or the exchange of batteries. De-adhesion method can occur in two ways, from the outside and from the inside, so the design is selected depending on the application. This study shows the significance of the development of sensor-based smart clothing, in that it presented a universal model for users.

Superhydrophobic Surfaces for condensation by using spray coating method

  • Oh, Seungtae;Seo, Donghyun;Lee, Choongyeop;Nam, Youngsuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.157.2-157.2
    • /
    • 2016
  • Water repellent surfaces may enhance the condensation by efficiently removing the condensed droplets. However, such surfaces may lose their original performance as they are exposed to external mechanical stresses. In this work, we fabricated spray-coated mechanically robust superhydrophobic surfaces using treated titanium dioxide (Type 1) or silica particles (Type 2). Then we compared the mechanical robustness of such surfaces with the silane-coated superhydrophobic surface and PEEK coated surface using a controlled-sand blasting method. The results show that the spray-coated samples can maintain the same level of the contact angle hysteresis than silane-coated superhydorphobic surface after sand blasting at 2 bar. The spray-coating method was applied to the tube type condenser and the condensation behaviors were observed within the environmental chamber with controlled pressure, humidity and non-condensable gas. Previously-reported droplet jumping was observed in the early stage of the condensation event, but soon the droplet jumping stopped and only dropwise condensation was observed since the condensed droplets were pinned on the cracks at spray-coated surfaces. The static contact angle decreases from $158.0^{\circ}$ to $133.2^{\circ}$, and hysteresis increases from $3.0^{\circ}$ to $23.5^{\circ}$ when active condensation occurs on such surfaces. This work suggests the benefits and limitation of spray-coated superhydrophobic condensers and help develop advanced condensers for practical use.

  • PDF

Mechanical Properties of Three-dimensional Glass Fabric-reinforced Vinyl Ester Matrix Composites (삼차원 유리직물 강화 비닐에스테르 복합재의 기계적 특성)

  • Park, Won-Bae;Park, Soo-Jin;Lee, Jae-Rock
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.715-718
    • /
    • 1998
  • In this work, bisphenol type vinyl ester was impregnated into the three-dimensional glass fabrics fabricated from different thickness changes. Their mechanical properties of the specimens have been investigated by three-point bending and flatwise compression tests. Also, interlaminar shear strength (ILSS) has been determined through short-beam test for the evaluation of interfacial adhesion at interfaces between fibers and matrix of the composites. The effect of thickness changes in three-dimensional glass fabric-reinforced composites have been described in this work.

  • PDF

Effect of Work Intensity on Fit Factor and Affecive Quality of Dustproof Mask (작업 강도가 방진 마스크의 밀착도와 감성품질에 미치는 영향)

  • Lee, Jinsil;Cho, Sunhee;Yun, Jungmin;Kim, Min-Sun;Park, Jaekyu;Choe, Jaeho
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.2
    • /
    • pp.301-310
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the effect of work intensity on fit factor and affective quality of the dustproof Background: Among the victims who suffer pneumoconiosis due to the inhalation of toxic substances or the lack of oxygen during the work, the proportion of the victims is larger than the other causes. Wearing a respirator may prevent pneumoconiosis, but it can be hazardous to workers because of the leakage through filters, cartridges, exhaust valves, broken parts, and face-to-face contact. Despite leakage through the contact area between the mask and the face has various causes such as the wearer's activity, sweat accumulation, facial shape, etc., There is a lack of relevant research and regulation compared to developed countries that have already institutionalized the law 30 years ago and give the right to sell through a test Method: The work intensity was adjusted by walking or running at 6km/h and 11km/h on the treadmill, and tasks were defined with reference to the test procedure and the exercise sequence applied in the face leakage test of the dustproof mask. And fit factor was measured objectively using 'Respirator Fit Tester 8038' which measures fit factor calculated by dividing the number of dust present outside the mask by inside the mask. In addition, affective quality was classified by the ease of use, ease of breathing, and ease of wearing, and was measured using the 5-point likert scale questionnaire. Results: There was a significant difference in fit factor, ease of breathing, and wearing convenience according to work intensity and no significant difference in ease of use(${\alpha}=0.01$). And when the work intensity was high, fit factor, ease of breathing, and wearing convenience were all lower than when the work intensity was low. Conclusion: In Korea, it is necessary to consider consideration of the work intensity when testing the leakage rate of the face part for safety certification of the respiratory protective equipment, When developing a mask, it should be possible to maintain high adhesion even under intense, active situation and high temperature conditions by selecting materials, improving the wearing style, and expanding the adjustable range.

Effects of the geometrical parameters of the core on the mechanical behavior of sandwich honeycomb panel

  • Ahmed, Settet T.;Aguib, Salah;Toufik, Djedid;Noureddine, Chikh;Ahmed, Chellil
    • Coupled systems mechanics
    • /
    • v.8 no.6
    • /
    • pp.473-488
    • /
    • 2019
  • The present work is the study of mechanical behavior due to variation of the geometrical parameters in the core of the sandwich honeycomb panel. This study has allowed us to increase or decrease the strains and stresses of the panel, in changing the angle of alveolus, as explained and described below. In taking into consideration the results obtained previously to improve the mechanical properties and increase the adhesion of different parts of the panel, without changing the adhesive, we have conceived two new models, in increasing the contact surfaces in boundary of each part of the panel and giving a conical hexagonal shape in his corp.

Effects of the addition of chelate compound in phosphating surface conditioning solution (인산염 표면 조정액 중의 킬레이트제 첨가 영향)

  • 남궁성;허보영
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.4
    • /
    • pp.281-288
    • /
    • 2001
  • Phosphating treatments have been performed to improve paint adhesion and corrosion resistance of zinc and zinc alloy coated steels for a long time. In this work, the effects of the addition of chelate compound were studied to improve the stability of surface conditioning solution and properties of zinc phosphate films. The coalescence of colloidal Ti-compound and extraneous charged particles (alkaliearth metal cation such as $Mg^{2+}$ , $Ca^{2+}$ ) were suppressed by using a surface conditioning solution with chelate compound. Therefore, after surface conditioning solution containing chelate compound was left standing for one week at room temperature, the formation of a white sediment was decreased comparing to surface conditioning solution without chelate compound. The crystal size of phosphate film was fine and the whiteness value of phosphated zinc coated steel sheets was also high without the decrease of corrosion resistance and anti-patina. It was very effective to use chelate compound improving the stability of surface conditioning solution.

  • PDF