• Title/Summary/Keyword: WO3

Search Result 720, Processing Time 0.025 seconds

The Effect of $WO_3$ Addition on Microwave Dielectric Properties in $BaTiO_3-3{(1-x)TiO_2-xWO_3}$ System ($WO_3$ 첨가량 변화에 따른 $BaTiO_3-3{(1-x)TiO_2-xWO_3}$ 계의 고주파 유전특성)

  • 박찬식;변재동;김왕섭;김경용
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.448-454
    • /
    • 1995
  • The effect of WO3 addition on microwave dielectric properties of BaTiO3-3{(1-x)TiO2-xWO3} system was studied. Addition of WO3 to this system resulted in the formation of BaWO4 and Ba2Ti9O20 phases. Both the dielectric constant (K) and the temperature coefficientof resonant frequency (Tf) were decreased with the amount of WO3 addition. The value of Q$\times$f0 was increased as the amount of WO3 was increased up to x=0.0275, and then decreased when x exceeded 0.03. At x=0.0275, this ceramic showed excellent microwave proprties of K=34-35, Q$\times$f0=50,000-53,000, and near zero ppm/$^{\circ}C$ of Tf.

  • PDF

A Study On the Electrical Characteristic of WO3 and NiO-WO3 Thin Films Prepared by Thermal Evaporation (Thermal Evaporation법에 의해 제조된 WO3 박막과 NiO-WO3박막의 전기적 특성에 관한 연구)

  • Na Eun-young;Na Dong-myong;Park Jin-seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.32-36
    • /
    • 2005
  • [ $WO_3$ ] and $NiO-WO_3$ thin films were deposited on a Si (100) substrate by using high vacuum thermal evaporation. The effects of various film thicknesses on the surface morphology $WO_3$ and $NiO-WO_3$ thin films were investigated. X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the deposited films. The results suggest that as $WO_3$ thin films became thick, their grain grew up to a $0.6{\mu}m$. On the other hand, NiO-doping to $WO_3$ thin films inhibited the grain growth five times less than undoped $WO_3$ thin films. This results show that NiO doping inhibited the grain growing of $WO_3$ thin films. Also, the variation of NOx sensitivity $(R_{NOx}/R_{air})$ to the thickness of $WO_3$ and $NiO-WO_3$ thin films were measured according to the thickness change of thin films and the working temperature of sensor in 5ppm NOx gas. As a result, $NiO-WO_3$ thin films showed more excellent properties than $WO_3$ thin films for NOx sensitivity.

A Electrical and Optical studies of WO3/Ag/WO3 Transparent Electrode by RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 WO3/Ag/WO3 투명전극의 전기·광학적 특성 연구)

  • Kang, Dong-Soo;Lee, Boong-Joo;Kwon, Hong-Kyu;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1533-1537
    • /
    • 2014
  • $WO_3/Ag/WO_3$ multilayer was researched by using RF magnetron sputtering with transparent electrode. Process gas flow ratio with $Ar/O_2$ were selected the optimum conditions at 70sccm/2sccm and $WO_3$ thin film at its conditions was appeared at transmittance about 80% in the visible light region to the average. $WO_3/Ag/WO_3$ multilayer thin films were fabricated from the same process condition which was the same gas flow ratio of Ar and $O_2$ $WO_3/Ag/WO_3$ thin films were appeared transmittance about 93% and sheet resistance about $6.41{\Omega}/{\square}$. From the SEM images, each thin films were appeared when $WO_3$ is 40nm and $O_2$ is 10nm.

Luminescence Characteristics and Crystal Structure of CaWO4-Li2WO4-Eu2O3 Phosphors (CaWO4-Li2WO4-Eu2O3계 형광체의 PL 특성과 결정구조)

  • Kim, Jeong-Seog;Choi, Jin-Ho;Jeong, Bong-Man;Kang, Hyun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.10-15
    • /
    • 2006
  • Photoluminescence (PL) and crystal structures of the $(l-x)CaWO_4-xLi_2WO_4$ binary system added with $Eu_2O_3$ activator have been characterized. The $CaWO_4\;and\;Li_2WO_4$ have the scheelite and phenakite structures respectively. The $CaWO_4-Li_2WO_4-Eu_2O_3$ phosphors show the red luminescence of 613 nm peak wavelength. The wavelength range of excitation spectral band is $380\~470$ nm with the peak wavelength of 397 nm. The $0.88(0.5CaWO_4-0.5Li_2WO_4)-0.12Eu_2O_3$ showed the most superior luminescence characteristics. The effect of co-doping elements such as $Al_2O_3$ and rare-earth oxides on PL has been characterized. The co-doping elements deteriorated the luminescence intensity except the $Al_2O_3$ and $Gd_2O_3$. The PL characteristics of $CaWO_4-Li_2WO_4-Eu_2O_3$ phosphors have been compared to those of the alkali europium double molybdates (tungstates) of scheelite-related structure such as $LiEu(MoO_4)_2$ and $CsEu(MoO_4)_2$. The crystal structures of $(l-y)[(l-x)CaWO_4-xLi_2WO_4]-yEu_2O_3$ phosphors have been characterized using XRD data and rietveld refinement.

Synthesis of Polyaniline/WO3 Anode for Lithium Ion Capacitor and Its Electrochemical Characteristics under Light Irradiation (리튬이온커패시터용 Polyaniline/WO3 음극 제조 및 이의 광 조사에 따른 전기화학적 특성 변화)

  • Park, Yiseul
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.884-889
    • /
    • 2018
  • In this study, polyaniline $(PANI)/WO_3$ electrode was prepared as an anode of a lithium ion capacitor, and its electrochemical characteristics were measured and analyzed. When PANI was electrochemically deposited on the surface of $WO_3$ electrode, the capacity of $PANI/WO_3$ was improved with increase of the deposited amounts of PANI. Furthermore, the effect of light irradiation on capacity and coulombic efficiency was examined by irradiating sunlight during charging and discharging. When the light was irradiated to the $WO_3$ electrode and the $PANI/WO_3$ electrode, those capacities and coulombic efficiencies were increased compared to that measured under the dark condition. It is attributed to the photocatalytic property of $WO_3$ that can generate photoelectrons by light irradiation. In $PANI/WO_3$ electrode, PANI also can be excited under the light irradiation with affecting the electrochemical property of electrode. The photoelectrons improve the capacity by participating in the intercalation of $Li^+$ ions, and also improve the coulombic efficiency by facilitating electrons' transport. Under the dark condition, the capacity of $PANI/WO_3$ was gradually reduced with increase of cycles due to a poor stability of PANI. However, the stability of PANI was significantly improved by the light irradiation, which is attributed to the oxidation-reduction reaction originated from the photogenerated electrons and holes in $PANI/WO_3$.

Fabrication and Characteristics of WO$_3$ Thick Film Gas Sensor for Detecting NO$\chi$ Gas Using Screen Printing Technique (스크린 프린팅법을 이용한 NO$\chi$ 감지용 WO$_3$ 후막형 가스센서의 제조 및 특성연구)

  • 박종현;김태균;송호근;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.3
    • /
    • pp.237-243
    • /
    • 1999
  • 스크린 프린팅법을 이용하여 NOX 감지용 WO3 후막형 가스센서를 제조하였다. 본 실험에서는 감지막의 소성 온도에따른 감도변화 및 Ru을 첨가함으로써 감도의 증진을 중점적으로 조사하였다. 또한 NO2 50 ppm하에서 CO, H2, CH4 그리고 i-C4H10등의 가스에 대하여 cross sensitivity를 조사하였다. WO3 가스센서는 소성온도 50$0^{\circ}C$, 작동온도 30$0^{\circ}C$에서 최대감도를 얻었다. 순수한 WO3에 Ru(0.004 wt%)을 첨가시 NO2 및 NO 가스에 대한 감도가 크게 증진되었다. 그러나 순수한 WO3 센서는 Ru(0.004 wt%)이 첨가된 WO3 센서보다 더 우수한 cross sensitivity를 보였다.

  • PDF

Post-annealing Effect of N-incorporated $WO_3$ Films for Photoelectrochemical Cells (광전기화학 전지를 위한 질소 도핑된 $WO_3$ 박막의 후열처리 효과)

  • Ahn, Kwang-Soon
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.202-209
    • /
    • 2009
  • N-incorporated $WO_3$ ($WO_3$:N) films were synthesized using a reactive RF magnetron sputtering on unheated substrate and then post-annealed at different temperatures from 300 to $500^{\circ}C$ in air. The N anion narrowed optical band gap, due to its mixing effect with the O 2p valence states. Furthermore, it was found that the crystallinity of the $WO_3$:N films was significantly improved by the post-annealing at $350^{\circ}C$ and higher. As a result, the $WO_3$:N films exhibited much better photoelectrochemical performance, compared with pure $WO_3$ films post-annealed at the same temperature.

Gas Sensing Characteristics of WO3:In2O3 Prepared by Ball-mill Time (볼밀시간에 의한 WO3:In2O3 가스센서의 감응특성)

  • Shin, Deuck-Jin;Yu, Yun-Sik;Park, Sung-Hyun;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.299-302
    • /
    • 2011
  • [ $WO_3$ ]powders were ball-milled with an alumina ball for 0-72 hours. $In_2O_3$ doped $WO_3$ was prepared by soaking ball-milled $WO_3$ in an $InCl_3$ solution. The mixed powder was annealed at $700^{\circ}C$ for 30 min in an air atmosphere. A paste for screen-printing the thick film was prepared by mixing the $WO_3$:In2O3 powders with ${\alpha}$-terpinol and glycerol. $In_2O_3$ doped $WO_3$ thick films were fabricated into a gas sensor by a screen-printing method on alumina substrates. The structural properties of the $WO_3$:$InO_3$ thick films were a monoclinic phase with a (002) dominant orientation. The particle size of the $WO_3$:$InO_3$ decreased with the ball-milling time. The sensing characteristics of the $In_2O_3$ doped $WO_3$ were investigated by measuring the electrical resistance of each sensor in the test-box. The highest sensitivity to 5 ppm $CH_4$ gas and 5 ppm $CH_3CH_2CH_3$ gas was observed in the ball-milled $WO_3$:$InO_3$ gas sensors at 48 hours. The response time of $WO_3$:$In_2O_3$ gas sensors was 7 seconds and recovery time was 9 seconds for the methane gas.

Influence of pH on Sensitivity of $WO_3$ NO gas sensor fabricated by Sol-Coprecipitation method (Sol-Coprecipitation 법에 의한 NO 감지용 $WO_3$ 센서 제조시 pH의 영향)

  • Kim, Suk-Bong;Lee, Dae-Sik;Lee, Duk-Dong;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.118-124
    • /
    • 2001
  • When particles are dissolved in solution, they have different zeta-potentials depending on pH. Zeta-potential has an influence on particle separation, which can control particle size. And the size of $WO_3$ particle affects the sensitivity of $WO_3$ sensor for detecting NO gas. Therefore we study influence of pH on NO-sensing $WO_3$ gas sensor fabricated by Sol-Coprecipitation method. As pH increases from 2 to 7, dynamic mobility of $WO_3$ precursor was increased. When pH was 7, it showed the largest distribution separation. It means when pH is 7, we can make $WO_3$ powder which has smaller particle size. And it is confirmed by particle size analysis of $WO_3$ powder, X-ray diffration result of $WO_3$ sensing layer and surface morphology. It also affect NO sensing characteristics of $WO_3$ gas sensor. The sensing film synthesized at pH 7 showed the largest sensitivity.

  • PDF

Visible photochromic energy shift of $WO_{3}$/CdS thin films fabricated by thermal evaporation method (진공증착 법으로 제작한 $WO_{3}$/CdS 박막의 가시광 광 변색의 에너지 전환)

  • Kim, Keun-Mook;Kim, Myung-Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.29-34
    • /
    • 2005
  • Tungsten oxide($WO_{3}$) is suitable to materials for photochromic window in the visible region. The resistivities of CdS, $WO_{3}$, and $WO_{3}$/CdS films prepared by thermal evaporation method were $4.61\times 10\^{3}$, $7.59\times10^{3}$, and $6.29\times10^{3}$ $\omega$ cm. And x-ray diffraction patterns of CdS, $WO_{3}$/CdS films showed a preferred orientation of hexagonal(002), and the monoclinic(020) structure, respectively. The optical transmission were measured that the cut-on wavelength were 510nm, 380nm for CdS and $WO_{3}$ films respectively, and the transmission spectrum of $WO_{3}$/CdS was shifted into the visible region. Photoluminescence(PL) spectra showed the two peaks at 2.8 eV and 3.2 eV for the as-grown sample($WO_{3}$/CdS ($500{\AA}$), but the other sample($WO_{3}$/CdS ($1000{\AA}$)) had a peak energy value of 2.8 eV. The photochromism of $WO_{3}$/CdS films showed that the excitation of electron-hole pairs and subsequent coloration is shifted into visible-light range. And the spectral behavior of coloration turned out to be proportional to the excited electron-hole pairs creation rate of CdS film. This result is interpreted in terms of charge carrier injection from the CdS-layer into the $WO_{3}$ films. We found a value of about 2.8 eV of $WO_{3}$/CdS film which is somewhat higher than peak energy of 2.54 eV using CBD prepared by Bechinger et. al.

  • PDF