• Title/Summary/Keyword: WNT signaling

검색결과 201건 처리시간 0.021초

Wnt/β-Catenin Signaling Pathway Is Necessary for the Specification but Not the Maintenance of the Mouse Retinal Pigment Epithelium

  • Jong-Myeong Kim;Kwang Wook Min;You-Joung Kim;Ron Smits;Konrad Basler;Jin Woo Kim
    • Molecules and Cells
    • /
    • 제46권7호
    • /
    • pp.441-450
    • /
    • 2023
  • β-Catenin (Ctnnb1) has been shown to play critical roles in the development and maintenance of epithelial cells, including the retinal pigment epithelium (RPE). Ctnnb1 is not only a component of intercellular junctions in the epithelium, it also functions as a transcriptional regulator in the Wnt signaling pathway. To identify which of its functional modalities is critically involved in mouse RPE development and maintenance, we varied Ctnnb1 gene content and activity in mouse RPE lineage cells and tested their impacts on mouse eye development. We found that a Ctnnb1 double mutant (Ctnnb1dm), which exhibits impaired transcriptional activity, could not replace Ctnnb1 in the RPE, whereas Ctnnb1Y654E, which has reduced affinity for the junctions, could do so. Expression of the constitutively active Ctnnb1∆ex3 mutant also suppressed the development of RPE, instead facilitating a ciliary cell fate. However, the post-mitotic or mature RPE was insensitive to the loss, inactivation, or constitutive activation of Ctnnb1. Collectively, our results suggest that Ctnnb1 should be maintained within an optimal range to specify RPE through transcriptional regulation of Wnt target genes in the optic neuroepithelium.

Positional Cloning of Novel Genes in Zebrafish Developmental Mutants

  • Kim, Cheol-Hee
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.24-25
    • /
    • 2003
  • The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. I will talk about positional cloning of two developmental mutants in zebrafish. The first mutant is headless: The vertebrate organizer can induce a complete body axis when transplanted to the ventral side of a host embryo by virtue of its distinct head and trunk inducing properties. Wingless/Wntantagonists secreted by the organizer have been identified as head inducers. Their ectopic expression can promote head formation, whereas ectopic activation of Wnt signalling during early gastrulation blocks head formation. These observations suggest that the ability of head inducers to inhibit Wntsignalling during formation of anterior structures is what distinguishes them from trunk inducers that permit the operation of posteriorizing Wnt signals. I describe the zebrafish headless (hdl) mutant and show that its severe head defects are due to a mutation in T-cell factor-3 (Tcf3), a member of the Tcf/Lef family. Loss of Tcf3 function in the hdl mutant reveals that hdl represses Wnt target genes. I provide genetic evidence that a component of the Wntsignalling pathway is essential in vertebrate head formation and patterning. Second mutant is mind bomb: Lateral inhibition, mediated by Notch signaling, leads to the selection of cells that are permitted to become neurons within domains defined by proneuralgene expression. Reduced lateral inhibition in zebrafish mib mutant embryos permits too many neural progenitors to differentiate as neurons. Positional cloning of mib revealed that it is a gene in the Notch pathway that encodes a RING ubiquitin ligase. Mib interacts with the intracellular domain of Delta to promote its ubiquitylation and internalization. Cell transplantation studies suggest that mib function is essential in the signaling cell for efficient activation of Notch in neighboring cells. (중략)

  • PDF

Anticancer activity and potential mechanisms of 1C, a ginseng saponin derivative, on prostate cancer cells

  • Wang, Xu De;Su, Guang Yue;Zhao, Chen;Qu, Fan Zhi;Wang, Peng;Zhao, Yu Qing
    • Journal of Ginseng Research
    • /
    • 제42권2호
    • /
    • pp.133-143
    • /
    • 2018
  • Background: AD-2 (20(R)-dammarane-3b, 12b, 20, 25-tetrol; 25-OH-PPD) is a ginsenoside and isolated from Panax ginseng, showing anticancer activity against extensive human cancer cell lines. In this study, effects and mechanisms of 1C ((20R)-3b-O-(L-alanyl)-dammarane-12b, 20, 25-triol), a modified version of AD-2, were evaluated for its development as a novel anticancer drug. Methods: MTT assay was performed to evaluate cell cytotoxic activity. Cell cycle and levels of reactive oxygen species (ROS) were determined using flow cytometry analysis. Western blotting was employed to analyze signaling pathways. Results: 1C concentration-dependently reduces prostate cancer cell viability without affecting normal human gastric epithelial cell line-1 viability. In LNCaP prostate cancer cells, 1C triggered apoptosis via Bcl-2 family-mediated mitochondria pathway, downregulated expression of mouse double minute 2, upregulated expression of p53 and stimulated ROS production. ROS scavenger, N-acetylcysteine, can attenuate 1C-induced apoptosis. 1C also inhibited the proliferation of LNCaP cells through inhibition on $Wnt/{\beta}-catenin$ signaling pathway. Conclusion: 1C shows obvious anticancer activity based on inducing cell apoptosis by Bcl-2 family-mediated mitochondria pathway and ROS production, inhibiting $Wnt/{\beta}-catenin$ signaling pathway. These findings demonstrate that 1C may provide leads as a potential agent for cancer therapy.

제브라피쉬를 이용한 새로운 유전자의 발굴 및 기능분석 (Zebrafish as a Tool for Function Genomics)

  • 김현택;김철희
    • 한국발생생물학회지:발생과생식
    • /
    • 제7권2호
    • /
    • pp.69-80
    • /
    • 2003
  • 대량의 발생 유전학적 연구가 가능한 척추동물로서 최근 제브라피쉬가 새로운 동물모델로 급부상하고 있다 다양한 형태의 돌연변이들로부터 새로운 유전자들이 발굴되어지고 있으며, 인간 유전체의 기능 분석 수단으로 활용되어지고 있다. 신경계의 형성과 분화에 이상이 있는 hendless와 mind bomb이라는 두 가지 돌연변이주에서 positional cloning에 의한 원인 유전자의 발굴과 기능 분석의 예로써 현재 제브라피쉬의 연구 현황을 살펴보고자 한다. headless의 원인 유전자로 Tcf-3가 밝혀졌으며, 초기 발생단계에서 Wnt 신호전달이 두뇌의 형태형성과 영역 결정에서 핵심적 역할을 하고 있다는 사실이 밝혀졌다. mind bomb에서의 비정상적인 신경세포의 운명 결정은 lateral inhibition과 Notch 신호전달의 결함에 의한 것이고, 그 원인 유전자는 Notch ligand인 Delta에 결합하는 새로운 ubiquitin E3 ligase로 밝혀졌다. 이러한 돌연변이를 통한 연구는 현재 인간 질환모델의 개발이라는 방향으로 확대되고 있다.

  • PDF

CYP1B1 Activates Wnt/β-Catenin Signaling through Suppression of Herc5-Mediated ISGylation for Protein Degradation on β-Catenin in HeLa Cells

  • Park, Young-Shin;Kwon, Yeo-Jung;Chun, Young-Jin
    • Toxicological Research
    • /
    • 제33권3호
    • /
    • pp.211-218
    • /
    • 2017
  • Cytochrome P450 1B1 (CYP1B1) acts as a hydroxylase for estrogen and activates potential carcinogens. Moreover, its expression in tumor tissues is much higher than that in normal tissues. Despite this association between CYP1B1 and cancer, the detailed molecular mechanism of CYP1B1 on cancer progression in HeLa cells remains unknown. Previous reports indicated that the mRNA expression level of Herc5, an E3 ligase for ISGylation, is promoted by CYP1B1 suppression using specific small interfering RNA, and that ISGylation may be involved in ubiquitination related to ${\beta}-catenin$ degradation. With this background, we investigated the relationships among CYP1B1, Herc5, and ${\beta}-catenin$. RT-PCR and western blot analyses showed that CYP1B1 overexpression induced and CYP1B1 inhibition reduced, respectively, the expression of $Wnt/{\beta}-catenin$ signaling target genes including ${\beta}-catenin$ and cyclin D1. Moreover, HeLa cells were treated with the CYP1B1 inducer $7,12-dimethylbenz[{\alpha}]anthracene$ (DMBA) or the CYP1B1 specific inhibitor, tetramethoxystilbene (TMS) and consequently DMBA increased and TMS decreased ${\beta}-catenin$ and cyclin D1 expression, respectively. To determine the correlation between CYP1B1 expression and ISGylation, the expression of ISG15, a ubiquitin-like protein, was detected following CYP1B1 regulation, which revealed that CYP1B1 may inhibit ISGylation through suppression of ISG15 expression. In addition, the mRNA and protein expression levels of Herc5 were strongly suppressed by CYP1B1. Finally, an immunoprecipitation assay revealed a direct physical interaction between Herc5 and ${\beta}-catenin$ in HeLa cells. In conclusion, these data suggest that CYP1B1 may activate $Wnt/{\beta}-catenin$ signaling through stabilization of ${\beta}-catenin$ protein from Herc5-mediated ISGylation for proteosomal degradation.

miR-458b-5p regulates ovarian granulosa cells proliferation through Wnt/β-catenin signaling pathway by targeting catenin beta-1

  • Wang, Wenwen;Teng, Jun;Han, Xu;Zhang, Shen;Zhang, Qin;Tang, Hui
    • Animal Bioscience
    • /
    • 제34권6호
    • /
    • pp.957-966
    • /
    • 2021
  • Objective: Ovarian follicular development, which dependent on the proliferation and differentiation of granulosa cells (GCs), is a complex biological process in which miRNA plays an important role. Our previous study showed that miR-458b-5p is associated with ovarian follicular development in chicken. The detailed function and molecular mechanism of miR-458b-5p in GCs is unclear. Methods: The luciferase reporter assay was used to verify the targeting relationship between miR-458b-5p and catenin beta-1 (CTNNB1), which is an important transcriptional regulatory factor of the Wnt/β-catenin pathway. The cell counting kit-8 (CCK-8) assay, flow cytometry with propidium iodide (PI) and annexin V-fluorescein isothiocyanate (FITC) labeling were applied to explore the effect of miR-458b-5p on proliferation, cell cycle and apoptosis of chicken GCs. Quantitative real-time polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels. Results: We demonstrated that the expression of miR-458b-5p and CTNNB1 showed the opposite relationship in GCs and theca cells of hierarchical follicles. The luciferase reporter assay confirmed that CTNNB1 is the direct target of miR-458b-5p. Using CCK-8 assay and flow cytometry with PI and Annexin V-FITC labeling, we observed that transfection with the miR-458b-5p mimics significantly reduced proliferation and has no effects on apoptosis of chicken GCs. In addition, miR-458b-5p decreased the mRNA and protein expression of CD44 molecule and matrix metallopeptidase 7, which are the downstream effectors of CTNNB1 in Wnt/β-Catenin pathway and play functional roles in cell proliferation. Conclusion: Taken together, the data indicate that miR-458b-5p regulates ovarian GCs proliferation through Wnt/β-catenin signaling pathway by targeting CTNNB1, suggesting that miR-458b-5p and its target gene CTNNB1 may potentially play a role in chicken ovarian follicular development.

Skeletal Development - Wnts Are in Control

  • Hartmann, Christine
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.177-184
    • /
    • 2007
  • Approximately 200 individual skeletal elements, which differ in shape and size, are the building blocks of the vertebrate skeleton. Various features of the individual skeletal elements, such as their location, shape, growth and differentiation rate, are being determined during embryonic development. A few skeletal elements, such as the lateral halves of the clavicle and parts of the skull are formed by a process called intramembranous ossification, whereby mesenchymal cells differentiate directly into osteoblasts, while the majority of skeletal elements are formed via endochondral ossification. The latter process starts with the formation of a cartilaginous template, which eventually is being replaced by bone. This requires co-regulation of differentiation of the cell-types specific for cartilage and bone, chondrocytes and osteoblasts, respectively. In recent years it has been demonstrated that Wnt family members and their respective intracellular pathways, such as non-canonical and the canonical $Wnt/{\beta}$-catenin pathway, play important and diverse roles during different steps of vertebrate skeletal development. Based on the recent discoveries modulation of the canonical Wnt-signaling pathway could be an interesting approach to direct stem cells into certain skeletal lineages.

$\beta$-catenin에 의한 신호전달과 그 역할 ($\beta$-catenin은 세포의 감초인가\ulcorner)

  • 정선주
    • 한국동물학회:뉴스레터
    • /
    • 제18권1호
    • /
    • pp.16-25
    • /
    • 2001
  • Wnt signaling의 주요 분자인 $\beta$-catenin의 기능과 조절에 관한 연구, 특히 TCF family 단백질과 함께 작용하는 신호전달에 관한 연구가 최근에 활발히 진행되고 있다. $\beta$-catenin 단백질은 Drosophila나 Xenopus의 발생초기에 중요한 역할을 한다는 것이 알려져 있고 Wnt (Wingless) 단백질에 의하여 활성화되는 신호전달 과정에 관여한다고 알려져 있으므로, TCF 단백질들이 Wnt signalling pathway에 작용한다는 것을 의미한다. 즉, $\beta$-catenin/TCF complex는 발생초기의 세포의 운명을 결정하는 세포의 분화에 중요하리라 생각된다. 또한 $\beta$-catenin/TCF complex는 세포의 암화에도 중요하다는 것이 보고되었다. 정상세포의 경우, $\beta$-catenin은 APC 라는 tumor suppressor에 의하여 결합하고 단백질의 분해가 유도되어 핵 안의 TCF와 결합하지 못하는데, 암세포의 경우 APC가 결실되었거나 $\beta$-catenin의 양이 과도하게 발현되어 암세포화 되는 것으로 보인다. 즉, $\beta$-catenin은 일종의 oncogene으로 작용하는 단백질이며, 그 작용에 필수적인 전사인자가 TCF라는 것이다. 특히, 대장암세포에서 이 $\beta$-catenin/TCF complex에 의해 활성화되는 유전자로서 c-myc과 cyclin Dl 등이 있는 것으로 보아, $\beta$-catenin/TCF 단백질은 세포의 증식 및 사멸에 관여하는 단백질들의 발현을 조절하는 매우 중요한 인자라고 생각된다.

  • PDF

FGF signaling: diverse roles during cochlear development

  • Ebeid, Michael;Huh, Sung-Ho
    • BMB Reports
    • /
    • 제50권10호
    • /
    • pp.487-495
    • /
    • 2017
  • Mammalian inner ear comprises of six sensory organs; cochlea, utricle, saccule, and three semicircular canals. The cochlea contains sensory epithelium known as the organ of Corti which senses sound through mechanosensory hair cells. Mammalian inner ear undergoes series of morphogenesis during development beginning thickening of ectoderm nearby hindbrain. These events require tight regulation of multiple signaling cascades including FGF, Wnt, Notch and Bmp signaling. In this review, we will discuss the role of newly emerging signaling, FGF signaling, for its roles required for cochlear development.

Generation of Isthmic Organizer-Like Cells from Human Embryonic Stem Cells

  • Lee, Junwon;Choi, Sang-Hwi;Lee, Dongjin R;Kim, Dae-Sung;Kim, Dong-Wook
    • Molecules and Cells
    • /
    • 제41권2호
    • /
    • pp.110-118
    • /
    • 2018
  • The objective of this study was to induce the production of isthmic organizer (IsO)-like cells capable of secreting fibroblast growth factor (FGF) 8 and WNT1 from human embryonic stem cells (ESCs). The precise modulation of canonical Wnt signaling was achieved in the presence of the small molecule CHIR99021 ($0.6{\mu}M$) during the neural induction of human ESCs, resulting in the differentiation of these cells into IsO-like cells having a midbrain-hindbrain border (MHB) fate in a manner that recapitulated their developmental course in vivo. Resultant cells showed upregulated expression levels of FGF8 and WNT1. The addition of exogenous FGF8 further increased WNT1 expression by 2.6 fold. Gene ontology following microarray analysis confirmed that IsO-like cells enriched the expression of MHB-related genes by 40 fold compared to control cells. Lysates and conditioned media of IsO-like cells contained functional FGF8 and WNT1 proteins that could induce MHB-related genes in differentiating ESCs. The method for generating functional IsO-like cells described in this study could be used to study human central nervous system development and congenital malformations of the midbrain and hindbrain.