• Title/Summary/Keyword: WLAN/WiMAX application

Search Result 17, Processing Time 0.021 seconds

Wideband Monopole Antenna for Multiband Mobile Communication Applications

  • Rhyu, Han-Phil;Lee, Hyun-Kyu;Lee, Byung-Je
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.71-75
    • /
    • 2008
  • A folded monopole antenna is proposed for mobile communication applications. The proposed antenna covers CDMA and GSM at low frequency band, and it has a wide bandwidth (6.85 GHz) at high frequency band to cover GPS, DCS, USPCS, UHfS, WLAN (2.4, 5.2, 5.8 GHz), and the future application of IEEE 802.16e mobile WiMAX.

  • PDF

Design and Manufacture of Triple-Band Antennas with Modified Rectangular Ring and Rectangular Patch for WLAN/WiMAX system applications (변형된 사각 링과 사각 패치를 갖는 WLAN/WiMAX 시스템에 적용 가능한 삼중대역 안테나 설계 및 제작)

  • Kim, Woo-Su;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.341-348
    • /
    • 2019
  • In this paper, a monopole type antenna applicable to WLAN and WiMAX standard frequency bands is designed and fabricated. The proposed antenna is designed to have rectangular ring and rectangular patch based on microstrip feeding for triple band characteristics and inserted two stub in the top of the rectangular ring patch to enhance impedance bandwidth characteristics. The proposed antenna has $18.0mm(2W_1+W_2){\times}33.0mm(L_7+L_8+L_9)$ on a dielectric substrate of $27.0mm(W_1){\times}44mm(L_1){\times}1.0mm$ size. From the fabrication and measurement results, impedance bandwidths of 660MHz (2,08 to 2.74GHz) for 2.4/2.5MHz band, 488MHz (3.40 to 3.88GHz) for 3.5MHz band, and 2,180MHz (4.61 to 6.79GHz) for 5,000MHz band were obtained based on the impedance bandwidth. The proposed antenna also obtained the measured gain and radiation pattern in the anechoic chamber.

A 2.3-2.7 GHz Dual-Mode RF Receiver for WLAN and Mobile WiMAX Applications in $0.13{\mu}m$ CMOS (WLAN 및 Mobile WiMAX를 위한 2.3-2.7 GHz 대역 이중모드 CMOS RF 수신기)

  • Lee, Seong-Ku;Kim, Jong-Sik;Kim, Young-Cho;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.51-57
    • /
    • 2010
  • A dual-mode direct conversion receiver is developed in $0.13\;{\mu}m$ RF CMOS process for IEEE 802.11n based wireless LAN and IEEE 802.16e based mobile WiMAX application. The RF receiver covers the frequency band between 2.3 and 2.7 GHz. Three-step gain control is realized in LNA by using current steering technique. Current bleeding technique is applied to the down-conversion mixer in order to lower the flicker noise. A frequency divide-by-2 circuit is included in the receiver for LO I/Q differential signal generation. The receiver consumes 56 mA at 1.4 V supply voltage including all LO buffers. Measured results show a power gain of 32 dB, a noise figure of 4.8 dB, a output $P_{1dB}$ of +6 dBm over the entire band.

Radio Resource Management using a Game Theoretic Approach Method in Heterogeneous Wireless Networks (이종 네트워크 환경에서 게임 이론적 접근방법을 이용한 무선 자원관리)

  • Kim, Nam-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2178-2184
    • /
    • 2015
  • With the development of wireless network technologies, mobile users may use various networks easily and expect more advanced services. On the other hand, it may bring on some problems with network resource management that should lead the service provider to improve the current service quality and manage the network resource efficiently. This paper proposes the optimized radio resource management (RRM) scheme that integrates the Grey Relational Analysis (GRA) and game theory. The first applies the GRA to determine the Grey Relation Coefficient (GRC) factors that represent the network preference, and the network provider then selects the requested service that provide maximum payoff through Nash Equilibrium. Six requested services that have one application service among four different types of service classes were considered and the game was played repeatedly. In WiMAX, WLAN 1 and WLAN 2 game, the maximum payoff of each players was 93, 90.6 and 92.8 respectively. The experimental results show that every requested service can be selected by the network provider. Consequently, the proposed radio resource management mechanism is more effective in heterogeneous wireless networks.

A Design and Manufacture of Antenna with DGS(Defected Ground System) for WLAN/WiMAX system (WLAN/WiMAX 시스템 적용을 위한 DGS를 갖는 삼중대역 안테나 설계 및 제작)

  • Seo, Na-Hyun;Rhee, Young-Chul;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.679-687
    • /
    • 2017
  • In this paper, a microstrip-fed triple-band monopole antenna with DGS (Defected Ground Structure) for WLAN/WiMAX applications was proposed. The proposed antenna is based on a microstrip-fed structure, and composed of two strip lines and DGS structure and then designed in order to get triple band characteristics. We carried out simulation about parameters. Adjusted the position and length of the two strips and three slits, we get the optimized parameters. The proposed antenna is fabricated on an FR-4 substrate of which the dielectric constant is 4.4, and its overall size is $34mm(W_1){\times}34mm(L_1){\times}1.6mm(t)$, and its proposed antenna size is $17.0mm(W_6){\times}30.75mm(L_3+L_4+L_9)$. From the fabricated and measured results, return loss of the proposed antenna satisfied return loss -10dB bandwidth 360 MHz (2.335~2.695 GHz), 645 MHz (3.37~4.015 GHz) and 1,770 MHz (5.14~6.91 GHz). And measured results of gain and radiation patterns characteristics displayed for operating bands.

MIMO Antenna Using Resonance of Ground Planes for 4G Mobile Application

  • Zhao, Xing;Kwon, Kyeol;Choi, Jeahoon
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.51-53
    • /
    • 2013
  • A MIMO antenna using the resonance of ground planes is proposed for 4G mobile application. A resonant mode is generated when the double ground planes (upper and lower) in the mobile terminal are excited as the radiator. By combining the resonant modes contributed from both the antenna element and the ground planes, the proposed MIMO antenna realizes a wideband property over LTE band 13. In addition, an inductive coil is employed to reduce the antenna volume. These approaches not only simplify antenna design but also effectively improve bandwidth and efficiency. The proposed MIMO antenna has an excellent ECC value of below 0.1 because of the nearly orthogonal radiation patterns of the two radiators. Moreover, an additional antenna is adopted to cover WiMAX, WLAN, and Bluetooth services simultaneously in frequency range from 2 GHz to 2.7 GHz.

Development of Quad-Band Printed Monopole Antenna Using Coupling Effect of Dual Rectangular Rings and L-Slots on the GND (이중 사각 링 패치 결합효과와 접지면 L-슬롯을 이용한 4중 대역 인쇄형 모노폴 안테나 개발)

  • Shin, Yong-Jin;Lee, Seungwoo;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1040-1049
    • /
    • 2014
  • In this paper, a quad-band antenna for DCS1800, PCS1900, WCDMA, WLAN and Mobile WiMAX application is proposed. The proposed antenna is a printed monopole structure, and consists of two rectangular ring-shaped radiating patches on the front side and two different size of L-shaped slots on the back side(ground plane). Two rectangular ring radiation patches are respectively resonant at 2 GHz and 3.5 GHz bands, and additional resonance is occurred at 5.3 GHz by the coupling effect between two ring patches. In addition, the optimized matching characteristic is obtained by controlling the gaps. Also, by adding two L-slots on the ground plane, additional resonant frequency band of 5.6 GHz is occurred. Finally the measured bandwidths of the proposed antenna below -10 dB return loss are 1,200 MHz(1.6~2.8 GHz), 800 MHz(3.2~4.0 GHz), 300 MHz(5.14~5.44 GHz), and 690 MHz(5.56~6.25 GHz). The radiation patterns have the omni-directional characteristic, and the measured antenna average gains at resonant bands are 0.86~4.07 dBi.