• Title/Summary/Keyword: WIND SPEED

Search Result 3,290, Processing Time 0.046 seconds

Yield Response of Rice Affected by Adverse Weather Conditions Occurred in 1999 (1999년에 발생한 기상재해 유형별 벼 수량반응조사 연구)

  • Ju Young-Cheoul;Lim Gab-June;Han Sang-Wook;Park Jung-Soo;Cho Young-Cheol;Kim Soon-Jae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • The objectives of this study were to investigate weather conditions which induced discolored grains and viviparous germination, and to evaluate yield responses following viviparous germination during mid- and late- ripening stage, the submergence during reproductive growth stage, and lodging in the yellow ripe stage. Weather conditions which caused glume discoloration at heading stage were 21.3-26.4$^{\circ}C$ in average temperature, 75.2-98.4% in relative humidity, 19.3 in transpiration coefficient and 10.8-13.8 m/sec. in wind speed. Yield reduction was 26-27% and 10~17%, respectively, when the glume discoloration rates were 63.2-65.7% and 38.3-45.2%, obviously due to the decrease in percent of fertile grain and ripening ratio. Weather conditions during continuous rain for 7 days were 96% in relative humidity, 18.9$^{\circ}C$ in average temperature, 21.9$^{\circ}C$ in maximum temperature, and 16.8$^{\circ}C$ in minimum temperature, causing the most viviparous germination in Juanbyeo(45.5%), followed by Jinbubyeo(14.5%), Bongkwangbyeo(14.2%), and Obongbyeo(12.6%). Lateral tillers started to occur when the submergence at the depth of 1.5-2 m lasted one day during the reproductive growth stage. The submergence for 2-3 days at 3-4 m of water depth induced 269-571 lateral tillers/m$^2$, supporting 32-52% of the total yield. The rice yield in the paddy fields which were left under the lodging conditions until harvesting was not different compared to that of the paddy fields which were kept upright by tieing them together after lodging, but perfect grain ratio decreased about 9.1% in the transplanting culture and 12.5% in the direct seeding culture on dry paddy field because of the increase in immature grains.

  • PDF

Regional Analysis of Forest Eire Occurrence Factors in Kangwon Province (강원도 지역 산불발생인자의 지역별 유형화)

  • 이시영;한상열;안상현;오정수;조명희;김명수
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2001
  • This study attempts to categorizes the factors of forest fire occurrences based on regional meteorologic data and general forest no characteristics of 18 cities and guns in Kangwon province. lo accomplish this goal, some statistical analyses such as analysis of variance, correspondence analysis and multidimensional scaling were adopted. To reveal the forest fires pattern of study region, a categorization process was conducted by employing the quantification approach which modified and quantified the metric-data of fire occurrence dates. Also, The fire occurrence similarity was compared by using multidimensional scaling for each study region. The major results are summarized as follows: It was found that the meteorological factors emerged as different to each region are average and maximum temperature, minimum dew point temperature and average and maximum wind speed. In the result of correspondence analysis representing relationships between fire causes and study regions, Kangrung is caused by arsonist, Chulwon, Hwachen and Yanggu caused by military factor, Sokcho and Chunchen caused by the debris burning, and Samchuk caused by general man-caused fires, respectively. Finally, the forest fire occurrence pattern of this study regions were divided into five areas such as, group I including Samchuk, Kangryung, Chunchen, Wonju, Hongchen and Hhoingsung, group II including Donghae, Taebaek, Yangyang and Pyongchang, group III including Jungsun, Chulwon and Whachen, group Ⅵ including Gosung, Injae and Yanggu, and group V including Shokcho and Youngwol.

  • PDF

Spatial Patterns and Temporal Variability of the Haines Index related to the Wildland Fire Growth Potential over the Korean Peninsula (한반도 산불 확장 잠재도와 관련된 Haines Index의 시.공간적 특징)

  • Choi Cwang-Yong;Kim Jun-Su;Won Myoung-Soo
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.2 s.113
    • /
    • pp.168-187
    • /
    • 2006
  • Windy meteorological conditions and dried fire fuels due to higher atmospheric instability and dryness in the lower troposphere can exacerbate fire controls and result in more losses of forest resources and residential properties due to enhanced large wildland fires. Long-term (1979-2005) climatology of the Haines Index reconstructed in this study reveals that spatial patterns and intra-annual variability of the atmospheric instability and dryness in the lower troposphere affect the frequency of wildland fire incidences over the Korean Peninsula. Exponential regression models verify that daily high Haines Index and its monthly frequency has statistically significant correlations with the frequency of the wildland fire occurrences during the fire season (December-April) in South Korea. According to the climatic maps of the Haines Index created by the Geographic Information System (GIS) using the Digital Elevation Model (DEM), the lowlands below 500m from the mean sea level in the northwestern regions of the Korean Peninsula demonstrates the high frequency of the Haines Index equal to or greater than five in April and May. The annual frequency of the high Haines Index represents an increasing trend across the Korean Peninsula since the mid-1990s, particularly in Gyeongsangbuk-do and along the eastern coastal areas. The composite of synoptic weather maps at 500hPa for extreme events, in which the high Haines Index lasted for several days consecutively, illustrates that the cold low pressure system developed around the Sea of Okhotsk in the extreme event period enhances the pressure gradient and westerly wind speed over the Korean Peninsula. These results demonstrate the need for further consideration of the spatial-temporal characteristics of vertical atmospheric components, such as atmospheric instability and dryness, in the current Korean fire prediction system.

Vegetation on Basic, Alkaloid, Arid Land of the Whole Area of Baicheng City, Jilin Province, China (중국(中國) 길림성(吉林省) 백성시(白城市) 일대의 염성(鹽性), 알칼리성 건조지(乾操地) 식생(植生)에 관한 연구)

  • Ahn, Young-Hee;Wang, Bai-Cheng;Jin, Ying-Hua;Choe, Chang-Young;Xuan, Yong-Nan;Song, Dong-Ok
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.1
    • /
    • pp.90-98
    • /
    • 2009
  • Every spring, Korea is always plagued by sandy dust from the western region of China and Mongolia. Yellow sand is causing an environmental problem to Japan and far into the American continent, let alone Korea. At present, the western region of China is going under desertification at a great speed due to climatic change and humans' damaging activities. To cope with this, each country including China is considering ecological restoration of deserts through planting. Accordingly, this research conducted a vegetation survey on Baicheng district which is a representative dry land of western China to obtain a basic data for ecological restoration of a desert. The survey revealed that Setaria viridis which invaded an arid land made a succession into Setaria viridis-Cannabis sativa var. fruderalis community together with Artemisia mongolica-Setaria viridis community due to the increase in salt concentration and alkalization subsequent to dryness. It was also found out that there finally formed Artemisia mongolica community on a flat intense in harsh wind and dryness with the continuous worsening of environmental conditions. There appeared a different type of vegetation on hilly districts where sporadic shade could come into being because the air humidity could be available relatively there. Frequently, typically appearing at the whole survey area, the Tributlus terrestris community was found to make succession into Tribulus terrestris-Cleisrogenes squarrosa community due to the aggravation of soil environment. In addition, with the worsening of the environment at hilly districts, there formed Clesirogenes squarrosa community resistant to dryness, salinity in soil and strong alkalinity. Further, there appeared higher plant life totalling to 62 taxa comprising 58 species and 4 varieties with 27 families and 49 genuses at the whole survey area. Among these, Compositae plants excellent in resistance to environment was surveyed the most, accounting for 27%.

Analysis of Hydrological Impact Using Climate Change Scenarios and the CA-Markov Technique on Soyanggang-dam Watershed (CA-Markov 기법을 이용한 기후변화에 따른 소양강댐 유역의 수문분석)

  • Lim, Hyuk-Jin;Kwon, Hyung-Joong;Bae, Deg-Hyo;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.453-466
    • /
    • 2006
  • The objective of this study was to analyze the changes in the hydrological environment in Soyanggang-dam watershed due to climate change results (in yews 2050 and 2100) which were simulated using CCCma CGCM2 based on SRES A2 and B2. The SRES A2 and B2 were used to estimate NDVI values for selected land use using the relation of NDVI-Temperature using linear regression of observed data (in years 1998$\sim$2002). Land use change based on SRES A2 and B2 was estimated every 5- and 10-year period using the CA-Markov technique based on the 1985, 1990, 1995 and 2000 land cover map classified by Landsat TM satellite images. As a result, the trend in land use change in each land class was reflected. When land use changes in years 2050 and 2100 were simulated using the CA-Markov method, the forest class area declined while the urban, bareground and grassland classes increased. When simulation was done further for future scenarios, the transition change converged and no increasing trend was reflected. The impact assessment of evapotranspiration was conducted by comparing the observed data with the computed results based on three cases supposition scenarios of meteorological data (temperature, global radiation and wind speed) using the FAO Penman-Monteith method. The results showed that the runoff was reduced by about 50% compared with the present hydrologic condition when each SRES and periods were compared. If there was no land use change, the runoff would decline further to about 3$\sim$5%.

Evaluation of Meteorological Elements Used for Reference Evapotranspiration Calculation of FAO Penman-Monteith Model (FAO Penman-Monteith 모형의 증발산량 산정에 이용되는 기상요소의 평가)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.274-279
    • /
    • 2006
  • The exact estimation of crop evapotranspiration containing reference or potential evapotranspiration is necessary for decision of crop water requirements. This study was carried out for the evaluation and application of various meteorological elements used for the calculation of reference evapotranspiration (RET) by FAO Penman-Monteith (PM) model. Meteorological elements including temperature, net radiation, soil heat flux, albedo, relative humidity, wind speed measured by meteorological instruments are required for RET calculation by FAO PM model. The average of albedo measured for crop growing period was 0.20, ranging from 0.12 to 0.23, and was slightly lower than 0.23. Determinant coefficients by measured albedo and green grass albedo were 0.97, 0.95 and standard errors were 0.74, 0.80 respectively. Usefulness of deductive regression models was admitted. To assess an influence of soil heat flux (G) on FAO PM, RET with G=0 was compared with RETs using G at 5cm soil depth ($G_{5cm}$) and G at surface ($G_{0cm}$). As the results, RET estimated by G=0 was well agreed with RET calculated by measured G. Therefore, estimated net radiation, G=0 and albedo of green grass could be used for RET calculation by FAO PM.

Manufacture of Spent Layer Chicken Meat Products by Natural Freeze-Drying during Winter (겨울철 자연 동결 건조에 의한 노계 육제품의 제조)

  • Lee, Sung-Ki;Kang, Sun-Moon;Lee, Ik-Sun;Seo, Dong-Kwan;Kwon, Il-Kyung;Pan, Jo-No;Kim, Hee-Ju;Ga, Cheon-Heung;Pak, Jae-In
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.277-285
    • /
    • 2010
  • The objective of this study was to manufacture spent layer chicken meat products by natural freeze-drying. The spent layers of chickens that were slaughtered at 80 wk were obtained from a local slaughter house and separated into two halves of carcasses. The samples were divided into the following groups: 1) control (non-curing), 2) curing, and 3) curing with 2% trehalose before drying. The cured meats were placed at $2^{\circ}C$ for 7 d and then transferred to a natural drying spot located in Injae City, Gangwondo, Korea. The experiment was conducted from January to March in 2008. The average temperature, RH, and wind speed were $-1.5^{\circ}C$, 63%, and 1.8 m/sec, respectively. The cured treatments showed higher pH, lower Aw and lower shear force value compared with the control. Based on the results of TBARS (2-thiobarbituric acid reactive substances) level and volatile basic nitrogen value, lipid oxidation and protein deterioration were inhibited in curing treatments during drying. Trehalose acted as a humectant because it maintained a lower water activity despite the relatively higher moisture content during drying. The polyunsaturated fatty acids content and sensory attributes were higher in cured treatments than in the control during drying. Most of the bacterial counts in the treated groups were lower by 2 Log CFU/g after 1 mon of drying, and Salmonella spp. and Listeria spp. were not found in any treatment. There was also no microbial safety problem associated with dried meat products. Based on the results of this experiment, dried meat products could be manufactured from precured spent layer chickens by natural freeze-drying during winter.

Estimation of Reference Crop Evapotranspiration Using Backpropagation Neural Network Model (역전파 신경망 모델을 이용한 기준 작물 증발산량 산정)

  • Kim, Minyoung;Choi, Yonghun;O'Shaughnessy, Susan;Colaizzi, Paul;Kim, Youngjin;Jeon, Jonggil;Lee, Sangbong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.111-121
    • /
    • 2019
  • Evapotranspiration (ET) of vegetation is one of the major components of the hydrologic cycle, and its accurate estimation is important for hydrologic water balance, irrigation management, crop yield simulation, and water resources planning and management. For agricultural crops, ET is often calculated in terms of a short or tall crop reference, such as well-watered, clipped grass (reference crop evapotranspiration, $ET_o$). The Penman-Monteith equation recommended by FAO (FAO 56-PM) has been accepted by researchers and practitioners, as the sole $ET_o$ method. However, its accuracy is contingent on high quality measurements of four meteorological variables, and its use has been limited by incomplete and/or inaccurate input data. Therefore, this study evaluated the applicability of Backpropagation Neural Network (BPNN) model for estimating $ET_o$ from less meteorological data than required by the FAO 56-PM. A total of six meteorological inputs, minimum temperature, average temperature, maximum temperature, relative humidity, wind speed and solar radiation, were divided into a series of input groups (a combination of one, two, three, four, five and six variables) and each combination of different meteorological dataset was evaluated for its level of accuracy in estimating $ET_o$. The overall findings of this study indicated that $ET_o$ could be reasonably estimated using less than all six meteorological data using BPNN. In addition, it was shown that the proper choice of neural network architecture could not only minimize the computational error, but also maximize the relationship between dependent and independent variables. The findings of this study would be of use in instances where data availability and/or accuracy are limited.

Groundwater Recharge Evaluation on Yangok-ri Area of Hongseong Using a Distributed Hydrologic Model (VELAS) (분포형 수문모형(VELAS)을 이용한 홍성 양곡리 일대 지하수 함양량 평가)

  • Ha, Kyoochul;Park, Changhui;Kim, Sunghyun;Shin, Esther;Lee, Eunhee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, one of the distributed hydrologic models, VELAS, was used to analyze the variation of hydrologic elements based on water balance analysis to evaluate the groundwater recharge in more detail than the annual time scale for the past and future. The study area is located in Yanggok-ri, Seobu-myeon, Hongseong-gun, Chungnam-do, which is very vulnerable to drought. To implement the VELAS model, spatial characteristic data such as digital elevation model (DEM), vegetation, and slope were established, and GIS data were constructed through spatial interpolation on the daily air temperature, precipitation, average wind speed, and relative humidity of the Korea Meteorological Stations. The results of the analysis showed that annual precipitation was 799.1-1750.8 mm, average 1210.7 mm, groundwater recharge of 28.8-492.9 mm, and average 196.9 mm over the past 18 years from 2001 to 2018 in the study area. Annual groundwater recharge rate compared to annual precipitation was from 3.6 to 28.2% with a very large variation and average 14.9%. By the climate change RCP 8.5 scenario, the annual precipitation from 2019 to 2100 was 572.8-1996.5 mm (average 1078.4 mm) and groundwater recharge of 26.7-432.5 mm (average precipitation 16.2%). The annual groundwater recharge rates in the future were projected from 2.8% to 45.1%, 18.2% on average. The components that make up the water balance were well correlated with precipitation, especially in the annual data rather than the daily data. However, the amount of evapotranspiration seems to be more affected by other climatic factors such as temperature. Groundwater recharge in more detailed time scale rather than annual scale is expected to provide basic data that can be used for groundwater development and management if precipitation are severely varied by time, such as droughts or floods.

Risk Assessment of Operator Exposure During Treatment of Fungicide Dithianon on Apple Orchard (사과 과수원에서 농약살포시 살균제 Dithianon의 농작업자 위해성 평가)

  • Cho, ll Kyu;Kim, Su Jin;Kim, Ji Myung;Oh, Young Goun;Seol, Jae Ung;Lee, Ji Ho;Kim, Jeong Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.302-311
    • /
    • 2018
  • BACKGROUND: Dithianon (75%) formulation were mixed and sprayed as closely as possible by normal practice on the ten farms located in the Mungeong of South Korea. Patches, cotton gloves, socks, masks, and XAD-2 resin were used for measurement of the potential exposure of dithianon on the applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to dithianon during preparation of spray suspension and application with a power sprayer on a apple orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump, IOM sampler and cassette, and glass fiber filter was used for inhalation exposure. The field studies were carried out in a apple orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 85.1% and 99.1% in the level of 100 LOQ (limit of quantification), while the LOQ for dithianon was $0.05{\mu}g/mL$ using HPLC-DAD. The exposure to dithianon on arms of the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, or legs). The exposure to dithianon on the applicator's legs (3.78 mg) was highest in the body parts. The dermal exposures for mixer/loader and applicator were 10 and 8.10 mg, respectively, from a grape orchard. The inhalation exposure during application was estimated as 0.151 mg, and the ratio of inhalation exposure was 11.2% of the dermal exposure (inner clothes). CONCLUSION: The dermal and inhalation exposure on the applicator appeared to be 4.203 mg - 25.064 mg and $0.529{\mu}g-116.241{\mu}g$, respectively. The total exposures on the agricultural applicators were at the level of 2.596 mg - 25.069 mg to dithianon during treatment for apple orchard. The TER showed 3.421 (>1) when AOEL of dithianon was used as a reference dose for the purpose of risk assessment of the mixing/loading and application.