• Title/Summary/Keyword: WIG(Wing In Ground Effect)

Search Result 49, Processing Time 0.021 seconds

A Numerical Analysis of the Thickness-Induced Effect on the Aerodynamic Characteristics of Wings Moving Near Ground

  • Han, Cheolheui;Cho, Jinsoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.29-35
    • /
    • 2000
  • A numerical method to simulate Wing-In-Ground(WIG) effects for the wings moving near ground is developed. The aerodynamic analysis scheme for the wings is based on a compressible non-planar lifting surface panel method and the WIG effect is included by images. The thickness-induced effect is implemented into the lifting surface panel method by using the teardrop theory. The numerical simulation is done for the rectangular wings by varying the ground proximity. The present method is validated by comparing the calculated aerodynamic coefficients with other numerical results and measured data, showing good agreements.

  • PDF

A Study on Conceptual Structural Design for the Composite Wing of A Small Scale WIG Flight Vehicle (소형 WIG선의 복합재 주날개 구조 개념 설계에 관한 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Kim, Ju-Il;Kang, Kuk-Jin;Park, Mi-Young
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.179-184
    • /
    • 2005
  • In the present study, conceptual design of the main wing for 20 seats WIG{wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The high stiffness and strength Carbon-Epoxy material was used for the major structure and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, firstly the design load was estimated with maximum flight load, and then flanges of the front and the rear spar from major bending load and the skin structure and the webs of the spars were preliminarily sized using the netting rules and the rule of mixture. In order to investigate the structural safety and stability, stress analysis was performed by Finite Element Codes such as NASTRAN/PA TRAN[6] and NISA II [7]. From the stress analysis results, it was confirmed that the upper skin structure between the front spar and rear spar was very unstable for the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich structure at the upper skin and the web were added. After design modification, even thought the designed wing weight was a little bit heavier than the target wing weight, the structural safety and stability of the final design feature was confirmed. Moreover, in order to fix the wing structure at the fuselage, the insert bolt type structure with six high strength bolts was adopted for easy assembly and removal.

  • PDF

Wing-In-Ground Effect on Free Surface

  • Kim, Yong-Hwan;Rhee, Shin-Hyung;Jee, Sang-Min
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.3
    • /
    • pp.39-50
    • /
    • 2007
  • This study aims the observation of wing-in-ground effect near free surface. Numerical computations are carried out to observe the deformation of free surface and the effects on lift and drag. The detailed flow fields around two- and three-dimensional wings with NACA 0012 section are observed from the results of a commercial CFD program, FLUENT, and the local deformations of free surface are obtained by applying a Rankine panel method. In the present cases, the small deformation of free surface under the wings is observed, but different forces are found between solid wall and free surface when the speed of wings becomes large.

Wind Tunnel Test Study on the Wings of WIG Ship (WIG선의 날개에 대한 풍동실험 고찰)

  • Kim, S.K.;Suh, S.B.;Lee, D.H.;Kim, K.E.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.60-67
    • /
    • 1997
  • This paper presents the results of 3rd wind tunnel test for the wings of WIG R/C test models, 'Hanjin-1' & 'Hanjin-2'. We made 'Hanjin-1' in last May 1995 and had a success in test flight. And in order to grasp the aerodynamic characteristics of wings in ground effect, the measurements of lift and drag were carried out for the various kinds of wing. It was shown that lift and lift-drag ratio increase with decrease of the clearance, but the feature was considerably depended on the shape of wing section. In this case we select the three kind of wing. section, and then compare their characteristics especially for a stability in longitudinal motion. They are NACA6409 for 'Hanjin-1' and the two kinds of DHMTU for ekranoplans of Russia. Experimental results show that the pitching moments of DHMTU wing sections are smaller than NACA6409.

  • PDF

Structural Design and Analysis for Carbon/Epoxy Composite Wing of A Small Scale WIG Vehicle (소형 위그선의 탄소/에폭시 복합재 주익의 구조 설계 및 해석에 관한 연구)

  • Park, Hyun-Bum;Kang, Kuk-Jin;Kong, Chang-Duk
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.12-19
    • /
    • 2006
  • In this paper, conceptual structural design of the main wing for a small scale WIG(Wing in Ground Effect) among high speed ship projects, which will be a high speed maritime transportation system for the next generation in Rep. of Korea, was performed. The Carbon/Epoxy material was selected for the major structure, and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for the present study, firstly the design load was estimated through the critical flight load case study, and then flanges of the front and rear spars from major bending loads and the skin and the spar webs from shear loads were preliminarily sized using the netting rule and the rule of mixture. Stress analysis was performed by a commercial FEA code, NASTRAN. From the stress analysis results for the first designed wing structure, it was confirmed that the upper skin between the front spar and the rear spar was unstable fer the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich type structure at the skin and the web were added. After design modification, the structural safety and stability for the final design feature was confirmed. In addition to this, the insert bolt type structure with eight high strength bolts to fix the wing structure to the fuselage was adopted for easy assembly and removal as well as in consideration of more than 20 years fatigue life.

Study on Forced Vibration Behavior of WIG Vehicle Main Wing Structure Excited by Propulsion System (프로펠러 엔진에 의해 가진되는 소형 위그선 주날개의 진동 거동 해석에 관한 연구)

  • Kong, Chang-Duk;Yoon, Jae-Huy;Park, Hyun-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.7-12
    • /
    • 2007
  • Previously study on structural design of the main wing of the twenty-seat class WIG (Wing in Ground Effect) craft. In the final design, three spars construction was selected for safety in the critical flight load, and the Carbon-Epoxy material was selected for lightness and structural stability. In this study, the forced vibration analysis was performed on the composite main wing structure of the twenty-seat class WIG craft with two-stroke pusher type reciprocating engine. The vibration analysis based on the finite element method was performed using a commercial FEM code, MSC/NASTRAN. Excitations for the frequency response analysis were assumed as the Y-mode (lateral mode), the Z-mode (vertical mode) and the $M_{xyz}$-mode (twisted mode) which are typical main vibration modes of engine. And excitations for the transient response analysis were assumed as the X-mode (longitudinal mode) with the oscillating propeller thrust which occurs in operation.

  • PDF

Structural Analysis of the Bottom Plate of Small WIG Craft (소형 위그선 선저판의 구조안전성 평가에 관한 연구)

  • Jeong, Han-Koo;Nho, In-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.697-702
    • /
    • 2010
  • A WIG(Wing-In-Ground effect) craft flies close to the water surface by utilizing a cushion of relatively high pressurized air between its wing and water surface. This implies that when one designs such craft it is important to have lightweight structures with adequate strength to resist external loads with some margins. To investigate this requirement, this paper deals with the structural analysis of the bottom plate of small WIG craft having a design landing weight of 1.2-ton. As building materials for the WIG craft, pre-preg carbon/epoxy composites are considered. The strength information of the bottom plate is obtained using the first-ply-failure analysis in conjunction with a mid-plane symmetric laminated plate theory. As a result, the first-ply-failure location, load and deflection of the bottom plate are obtained. The calculated strength information is compared with the water reaction load for the bottom plate of seaplanes considered when they land on the water surface -the same fluid-structure interaction mechanism as that of WIG craft. In the calculation of seaplane water reaction load information, the rules shown in FAR(Federal Aviation Regulations) Part 25 are used. Through the comparison, the structural integrity of the bottom plate for the WIG craft is checked.

Experimental and Improved Numerical Studies on Aerodynamic Characteristics of Low Aspect Ratio Wings for a Wing-In Ground Effect Ship

  • Ahn, Byoung-Kwon;Kim, Hyung-Tae;Lee, Chang-Sup;Lew, Jae-Moon
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.3
    • /
    • pp.14-25
    • /
    • 2008
  • Recently, there has been a serious effort to design a wing in ground effect (WIG) craft. Vehicles of this type might use low aspect ratio wings defined as those with smaller than 3. Design and prediction techniques for fixed wings of relatively large aspect ratio are reasonably well developed. However, Aerodynamic problems related to vortex lift on wings of low aspect ratio have made it difficult to use existing techniques. In this work, we firstly focus on understanding aerodynamic characteristics of low aspect ratio wings and comparing the results from experimental measurements and currently available numerical predictions for both inviscid and viscous flows. Second, we apply an improved numerical method, "B-spline based high panel method with wake roll-up modeling", to the same problem.

Slotted flap을 부착한 WIG선에서의 수치해석 및 진동 저감을 위한 플랩 형상 최적설계

  • Baek, Seung-Chan;Yang, Ji-Hye
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.541-547
    • /
    • 2016
  • 본 연구에서는 Slotted flap을 장착한 WIG선(Wing In Ground effect ship)에서 발생하는 진동을 최소화하기 위해 WIG선의 공력특성을 수치적으로 분석하고 그에 따라 플랩 형상에 대하여 최적화를 진행하였다. 주 익형에 대한 형상은 NACA 4412로 고정한 상태에서 플랩의 각도와 x, y좌표를 설계변수로 설정하였으며, 그에 따라 설정한 평균 $C_L$값을 유지하면서 진동의 진폭 크기가 작아지도록 제한 조건 및 목적 함수를 설정하였다. 최적화된 익형에서 플랩과 주 익형 사이에서 분출되는 유체는 코안다 효과의 영향을 받아 플랩 윗부분을 타고 흐른다. 이로 인해 진동에 결정적인 영향을 미치는 박리영역이 억제되었으며, 진동이 최소화 되었다. 결론적으로 플랩의 최적화를 통하여 기본 설계 익형에서 89%의 진동이 저감되는 것과 동시에 Lift/Drag 96.2로 기본 설계 익형에 비해 4.1배 향상되었다.

  • PDF

Flow Characteristics of WIG-Effect Vehicle with Direct-Underside-Pressurization System and Propeller (DUP와 프로펠러가 있는 위그선 주위의 유동특성)

  • Lee, Ju-Hee;Kim, Byeong-Sam;Park, Kyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.649-654
    • /
    • 2010
  • A three-dimensional numerical study of the WIG-effect vehicle with a direct-underside-pressurization (DUP) system and a propeller is performed to analyze the aerodynamic forces and moments acting on the vehicle. The computational model includes all the compartments of a WIG-effect vehicle, including a propeller in the middle of the fuselage and an air chamber under the fuselage. The DUP system and propeller help considerably reduce the take-off speed and minimize the effect of the hump drag when the vehicle accelerates to take off on water. The airflow is accelerated by a propeller, and the air then enters the air chamber through a channel in the middle of the fuselage, this air helps increase the lift since the dynamic pressure of air is converted to static pressure. However, the air accelerated by the propeller produces excessive drag and creates yawing moment. It is found that the effect of yawing and rolling moments on static stability is negligible.