• Title/Summary/Keyword: WFDS

Search Result 4, Processing Time 0.021 seconds

Evaluation of the Radiant Heat Effects according to the Change of Wind Velocity in Forest Fire by using WFDS (WFDS를 이용한 풍속에 따른 산림화재 복사열 강도 평가)

  • Song, Dong-Woo;Lee, Su-Kyung
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.1-7
    • /
    • 2013
  • The wildland fire intensity and scale are getting bigger owing to climate change in the world. In the case of domestic, the forest is distributed over approximately 63.7 % of country and the main facilities like a industrial facility or gas facility abuts onto it. Therefore there is potential that the wildland fire is developed to a large-scale disaster. In this study, the effect distances of the radiant heat flux from the crown fire are analysed according to the change of wind velocity. The safety criteria concerning the radiant heat flux to influence on the surrounding were researched to analyse the effect distances. The criteria of radiant heat flux were chosen $5kW/m^2$, $12.5kW/m^2$, $37.5kW/m^2$. WFDS, which is an extension of NIST's Fire Dynamics Simulator, was used to consequence analysis of the forest fire. In order to apply the analysis conditions, it is researched the forest conditions that is generally distributed in domestic region. As the result, the maximum effect distances by radiant heat were showed at the horizontal and vertical direction. When the wind velocity varied from 0 to 10 m/s, the maximum effect distance increased as the wind velocity increases. Interesting point is that the maximum effect distance were shown at the wind velocity of 8 m/s. The maximum effect distance was decreased according as the fuel moisture of trees increase. This study can contribute to analyse quantitative risk about the damage effect of the surrounding facilities caused by wildland fire.

Numerical Simulation of a Forest Fire Spread (산불 전파의 수치 시뮬레이션)

  • Lee, Myung-Sung;Won, Chan-Shik;Hur, Nahm-Keon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • In the present study, a forest fire spread was simulated with a three-dimensional, fully-transient, physics-based, computer simulation program. Physics-based fire simulation is based on the governing equations of fluid dynamics, combustion and heat transfer. The focus of the present study is to perform parametric study to simulate fire spread through flat and inclined wildland with vegetative fuels like trees or grass. The fire simulation was performed in the range of the wind speeds and degrees of inclination. From the results, the effect of the various parameters of the forest fire on the fire spread behavior was analyzed for the future use of the simulation in the prediction of fire behavior in the complex terrain.

A Numerical Study on the Effects of the Wind Velocity and Height of Grassland on the flame Spread Rate of Forest Fires (초지화재 발생시 바람의 속도 및 초본의 높이가 화염전파에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Sung-Yong;Kim, Dong-Hyun;Ryou, Hong-Sun;Lee, Sung-Hyuk
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.252-257
    • /
    • 2008
  • With the rapid exuberant growth of the forest, the number and size of forest fires and the costs of wildland fires have increased. The flame spread rate of forest fires is depending on the environmental variables like the wind velocity, moisture of grassland, etc. If we know the effects of the environmental variables on the fire growth, it is useful for wildland fiIre suppression. But analysis of the spread rate of wildland fire for these effects have not been established. In this study, the effects of wind velocity and height of grassland fuel have been investigated using the WFDS which is developed at NIST for prediction of the spread of wildland fires. The results showed that the relation between the height of the fuel and the spread rate of the head fires is, and the spread rates related to the wind velocity are predicted 17% less than the experimental results of Australia. When the wind velocity is over 7.5m/s, the concentration of pyrolyzed gas phase fuel is getting low due to fast movement of pyrolyzed gas, the flame spread rate becomes slow.

Implementation Strategy Based on the Classification of Depreciation Models (감가상각모형의 유형화에 기초한 적용방안)

  • Choi, Sungwoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.217-230
    • /
    • 2014
  • The purpose of this study is to develop the Generalized Depreciation Function (GDF) and Winfrey Depreciation Function (WDF) by reviewing methods for the depreciation accountings. The Depreciation Accounting Models (DAM), including straight-line model, declining-balance model, sum-of-the-year-digit model and sinking fund model presented in this paper, are reclassified into the charging pattern of increasing type, decreasing type and constant type. This paper also discusses the development of the GDFs based on convex type, concave type and constant type according to the demand pattern of product, frequency of plant usage, deterioration of time, relative inadequacy, Capital Expenditure (CAPEX) and Operating Expenditure (OPEX) of the Total Productive Maintenance (TPM). The WDFs presented in this paper depict a sudden degradation of plant performance by measuring the change of TPM activity at the midpoint of useful life of asset. The WDFs are classified into left-modal type, symmetrical type and right-modal type by varying the value of skewness and kurtosis. Moreover, three increasing patterns, such as convex, concave and linear types, are used in this paper to present the distinct identification of WFDs by using Instantaneous Depreciation Rate (IDR) in terms of Performance Depreciation Function (PDF) and Depreciation Density Function (DDF). In order to have better understanding of depreciation models, the numerical examples are used for evaluating the Net Operating Less Adjusted Tax (NOPLAT) and Economic Value Added (EVA). It is concluded that the depreciation models showing a large dispersion of EVA require the adjustment of NOPLAT and Invested Capital (IC) based on the objective cash basis and net operating activity for reducing the variation of EVA.