• Title/Summary/Keyword: WEP-L model

Search Result 3, Processing Time 0.018 seconds

Analysis on the evolution of water resources situation in Qiandao Lake Basin from 1960 to 2020

  • DU Junkai;Qiu Yaqin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.27-27
    • /
    • 2023
  • To analyze the evolution of water resources in Qiandao Lake Basin under the condition of climate change, a WEP-L distributed hydrological model was established to simulate the water cycle process in the basin during 1960-2020. The Mann-Kendall non-parametric test method and Hurst index method were used to analyze the inter-annual variation and annual distribution characteristics of the total water resources in the basin. The multi-scale temporal and spatial distribution and evolution trend of water resources in Qiandao Lake Basin were evaluated. The results show that: (1) The WEP-L model has good simulation results in the Qiandao Lake basin, and the Nash coefficient rate is above 0.83 in the periodic period and above 0.85 in the verification period. (2) The water yield coefficient of the whole basin ranges from 0.436 to 0.630. The annual average total water resource is 12.25 billion m3, equivalent to 1176.4mm of water depth. The annual distribution process shows a unimodal structure, and the water depth of each sub-basin ranges from 742 mm to 1266 mm, and the spatial distribution is higher in the west and lower in the east. (3) The annual water resources series in the basin showed an insignificant upward trend, and the Hurst index was 0.86, indicating a continuous upward trend. From the perspective of monthly water resources, January and February increased significantly, the other months were not significant changes.

  • PDF

Water Cycle Simulation for the Dorimcheon Catchment Using WEP Model (WEP 모형을 이용한 도림천 유역 물순환 모의)

  • Lee, Seung-Jong;Kim, Young-Oh;Lee, Sang-Ho;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.449-460
    • /
    • 2005
  • In this study, a WEP (Water and Energy transfer Processes) model was used to simulate the water cycle of the Dorimcheon catchment which suffers from the distorted water cycle as a typical urban catchment. Two different land uses in the past (i.e. 1975) and at present (i.e. 2000) were incorporated into the simulation to investigate the runoff characteristics resulting from the increase of the impervious ratio due to urbanization. The simulation results show that the concentration time is decreased and the peak discharge and the total runoff are increased by urbanization while the infiltration and baseflow are reduced. In addition, the effects of infiltration trenches and permeable pavements were also simulated to search for alternatives that can restore the distorted water cycle. The simulation results prove that the installation of both alternatives can restore the runoff characteristics to that prior to urbanization.