• Title/Summary/Keyword: WEF nexus simulation

Search Result 5, Processing Time 0.025 seconds

Multi-Regional Resources Management Practice using Water-Energy-Food Nexus Simulation Model

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.163-163
    • /
    • 2019
  • The rapidly growing global population increases the awareness of water, energy, and food security worldwide. The concept of Water, Energy, and Food nexus (hereafter, WEF nexus) has been widely introduced as a new resources management concept that integrate the water, energy, and food in a single management framework. Recently, WEF nexus analyzes not only the interconnections among the resources, but also considers the external factors (such as environment, climate change, policy, finance, etc) to enhance the resources sustainability by proper understanding of their relations. A nation-level resources management is quite complex task since multiple regions (e.g., watersheds, cities, and counties) with different characteristics are spatially interconnected and transfer the resources each other. This study proposes a multiple region WEF nexus simulation and transfer model. The model is equipped with three simulation modules, such as local nexus simulation module, regional resources transfer module, and optimal investment planning module. The model intends to determine an optimal capital investment plan (CIP), such as build-up of power plants, water/waste water treatment plants, farmland development and to determine W-E-F import/export decisions among areas. The objective is to maximize overall resources sustainability while minimize financial cost. For demonstration, the proposed model is applied to a semi-hypothetical study area with three different characterized cities. It is expected the model can be used as a decision support tool for a long-term resources management planning process.

  • PDF

Water, Energy, and Food Nexus Simulation Considering Inter-Basin Trade

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.190-190
    • /
    • 2016
  • The Water, Energy, and Food (WEF) nexus is an emerging concept for sustainable resources planning and management. The three valuable resources are inevitably interconnected, that is, it takes water to produce energy; it takes energy to extract, treat, and distribute water; and both water and energy are required to produce food. Although it is challenging to fully understand the complicated interdependency, a few studies have been devoted to interpret the concept and develop the assessment tools. The tools were mainly developed for nation-wide simulations without considering inter-basin or inter-state resources trade. This study tries to present an idea to develop and implement the WEF nexus simulation model in regional scale by advancing the existing nation-wide model with additional capability to simulate the inter-basin trade. This simulation could help local planners and engineers to determine optimal policies and infrastructure solutions to reach and ensure local demand satisfaction. The simulation model is implemented in hypothetical areas with different conditions of WEF demands and supplies. Although the inter-basin trade scenarios are simulated manually, it shows that the inter-basin resources trade could enhance the resources security for a longer time period. In future, an optimization model might be developed to provide the automatic calculation to reach optimum amount of WEF for the trade, which can be a helpful tool in decision making process.

  • PDF

Water, Energy, and Food Nexus: Preserving Local Resources through Inter-Basin Trade

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.153-153
    • /
    • 2018
  • Water-Energy-Food (WEF) nexus is a new holistic resources management concept that considers the interconnections among resources for sustainable resources planning and management. The current challenge is to fulfill the required demand in the lack of available resources. A traditional way to provide more available resource is by increase in production, but it caused increment of indirect demand of other interlinked resources. Importing resources from other area (where local supply is redundant) is another option to secure local resources with additional economic expenditure. The WEF nexus-trading model adapts the previously developed nationwide nexus simulation model with additional input parameters and functions to simulate trading scenarios. In general, the analysis starts with the quantification of local resources deficit (potential importing amount) and redundancy (potential exporting amount) of each area. Then, a trade module is initiated by determining possible donor area and importation amount. Finally, the nexus simulation for all area is re-run to determine final resources supply-demand results including the trading amount. The trade option provides an opportunity to meet local demands without draining local resources. However, the production capability of donor area may limit the importation amount. The newly developed trade option allows more alternatives for stakeholders to determine resources management plans.

  • PDF

Developing an Optimization Module for Water, Energy, and Food Nexus Simulation

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.184-184
    • /
    • 2017
  • A nation-wide water-energy-food (WEF) nexus simulation model has been developed by the authors and successfully applied to South Korea to predict the sustainability of those three resources in the next 30 years. The model was also capable of simulating future scenarios of resources allocation based on priority rules aiming to maximize resources sustainability. However, the process was still relying on several assumptions and trial-and-error approach, which sometimes resulted in non-optimal solutions of resources allocation. In this study, an optimization module was introduced to enhance the model in generating optimal resources management rules. The objective of the optimization was to maximize the reliability index of resources by determining the resources' allocation and/or priority rules for each demand type that accordingly reflect the resources management policies. Implementation of the optimization module would result in balanced allocation and management of limited resources and assist the stakeholders in deciding resources' management plans, either by fulfilling the domestic production or by global trading.

  • PDF

Relationship Analysis of Reference Evapotranspiration and Heating Load for Water-Energy-Food Nexus in Greenhouse (물-에너지-식량 넥서스 분석을 위한 시설재배지의 기준작물증발산량과 난방 에너지 부하 관계 분석)

  • Kim, Kwihoon;Yoon, Pureun;Lee, Yoonhee;Lee, Sang-Hyun;Hur, Seung-Oh;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.23-32
    • /
    • 2019
  • Increasing crop production with the same amount of resources is essential for enhancing the economy in agriculture. The first prerequisite is to understand relationships between the resources. The concept of WEF (Water-Energy-Food) nexus analysis was first introduced in 2011, which helps to interpret inter-linkages among the resources and stakeholders. The objective of this study was to analyze energy-water nexus in greenhouse cultivation by estimating reference evapotranspiration and heating load. For the estimation, this study used the physical model to simulate the inside temperature of the agricultural greenhouse using heating, solar radiation, ventilated and transferred heat losses as input variables. For estimating reference evapotranspiration and heating load, Penman-Monteith equation and seasonal heating load equation with HDH (Heating Degree-Hour) was applied. For calibration and validation of simulated inside temperature, used were hourly data observed from 2011 to 2012 in multi-span greenhouse. Results of the simulation were evaluated using $R^2$, MAE and RMSE, which showed 0.75, 2.22, 3.08 for calibration and 0.71, 2.39, 3.35 for validation respectively. When minimum setting temperature was $12^{\circ}C$ from 2013 to 2017, mean values of evapotranspiration and heating load were 687 mm/year and 2,147 GJ/year. For $18^{\circ}C$, Mean values of evapotranspiration and heating load were 707 mm/year and 5,616 GJ/year. From the estimation, the relationship between water and heat energy was estimated as 1.0~2.6 GJ/ton. Though additional calibrations with different types of greenhouses are necessary, the results of this study imply that they are applicable when evaluating resource relationship in the greenhouse cultivation complex.