• Title/Summary/Keyword: WDM networks

Search Result 211, Processing Time 0.025 seconds

An Optimization Approach to Routing and Wavelength Assignment in WDM All-Optical Mesh Networks without Wavelength Conversion

  • Lee, Kyung-Sik;Kang, Kug-Chang;Lee, Tae-Han;Park, Sung-Soo
    • ETRI Journal
    • /
    • v.24 no.2
    • /
    • pp.131-141
    • /
    • 2002
  • This paper considers a routing and wavelength assignment problem (RWAP) for the implementation of efficient Wavelength Division Multiplexing all-optical mesh networks without wavelength conversion. For a given physical network and required connections, the solution to the RWAP consists in how to select a suitable path and wavelength among the many possible choices for each connection so that no two paths using the same wavelength pass through the same link, while minimizing the number of required wavelengths. We introduce an integer programming formulation of the RWAP, which has an exponential number of variables, and propose an algorithm to solve it based on the column generation technique. The proposed algorithm can yield high quality solutions and tight lower bounds at the same time. Though the proposed algorithm cannot guarantee optimal solutions, computational results show that the algorithm yields provably good solutions within a reasonable time.

  • PDF

Dynamic Sub-carrier Multiplexed channel allocation and efficient frame distribution scheme in optical access networks (광가입자망 SCM 채널 동적할당 및 효율적 프레임 분배 방안)

  • 김남욱;윤현호;김태연;유정주;김병휘;강민호
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.113-116
    • /
    • 2003
  • In this paper, we propose a dynamic parallel channel allocation mechanism that dynamically controls total number of allocation channels of each subscriber to effectively service user bandwidth demands while high utilization and fairness are guaranteed in WDM based optical access networks. The logical performance gain of statistical multiplexing by dynamic channel allocation is validated with analytic method as well as simulations. We also introduce the adaptive padding scheme in order to efficiently distribute forwarded frames to aggregated multi-link channels which are formed by parallel channel allocation mechanism. The proposed scheme shows the performance enhancement by minimizing unnecessary padding size and the processing time.

  • PDF

Virtual Topology Design of Passive Star Networks using Genetic Algorithms (유전자 알고리즘을 이용한 Passive Star 네트워크의 가상위상설계)

  • Jeong, Hye-Jin;Wi, Gyu-Beom;Ye, Hong-Jin;Hong, Man-Pyo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.788-798
    • /
    • 2000
  • We can consider the interconnection structure suing WDM from two different levels, physical and virtual topologies. In the virtual topology, various channels on physical links can be established between transmitters and the receivers of the nodes. It is important to design efficient virtual topologies, because they have a benefit of performance improvement in interconnection networks depending on traffic matrices without changing physical topologies. In this paper we suggest a way to design virtual topologies that minimize average packet delays for given traffic matrices using genetic algorithms.

  • PDF

Analysis of structure and properties of wavelength demultiplexing using photopolymer phase grating (포토폴리머 위상 격자를 이용한 파장 역다중화 구조 및 특성 분석)

  • Choi, Won-Jun;An, Jun-Won;Kim, Nam;Lee, Kwon-Yeon
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2002
  • A new wavelength demultiplexing scheme using holographic volume phase grating formed in photopolymer is proposed and demonstrated. Through the analysis and experiments of the design parameters such as wavelength selectivity, operating spectral range, spatial channel distance and spatial intensity distribution of each channel, we proved that the proposed demultiplexing scheme is promising for wavelength division multiplexing (WDM). From the experimental results, the 3 dB bandwidth of 0.21nm and the crosstalk level of 26 dB for a 0.8 nm channel spacing are observed.

Ti:PPLN Šolc-type Integrated Optical wavelength filters utilizing polarization-mode conversion for WDM optical networks (편광모드 회전을 이용한 WDM 광 네트워크용 Ti:PPLN Šolc-형 집적광학 파장필터에 관한 연구)

  • Jung, Hong-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.161-168
    • /
    • 2009
  • We demonstrated $\check{S}$olc-type wavelength filters in periodically poled Ti-diffused lithium-niobate channel optical waveguide (Ti:PPLN). A $\check{S}$olc-type transmission spectrum based on the polarization-mode conversion was observed experimentally in PPLN with period 16.6${\mu}m$. A reasonable explanation of such a phenomenon was presented. A polarization-mode converted transmission peak was observed at wavelength 1272.49nm. The FWHM and sidelobe of spectrum are about 0.23nm and 7 dB, respectively.

  • PDF

Analysis on the optimal 2-dimensional code generation algorithm for high-speed optical CDMA network (초고속 광 코드분할 다원접속 네트웍용 최적 2차 코드 생성 알고리즘 제안 및 연구)

  • 신종윤;박남규
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.435-441
    • /
    • 2002
  • In this paper, we propose an optimal 2-dimensional construction algorithm of a code family for a high-speed optical code division multiple access network. The optimal 2-D code family generated by search algorithm has better spectrum efficiency than previous codes, having relatively many code sets with short code length and the same or lower BER. Using the optimal 2-D code, OCDMA systems make it possible to utilize the spectrum more efficiently than WDM systems. The probability of bit error for high-speed OCDMA transmissions is calculated as a function of the number of users in the presence of receiver and shot noise(additive white Gaussian noise).

Optimal Transmission Scheduling for All-to-all Broadcast in WDM Optical Passive Star Networks) (수동적인 스타형 파장 분할 다중 방식인 광 네트워크에서의 전방송을 위한 최적 전송 스케쥴링)

  • Jang, Jong-Jun;Park, Young-Ho;Hong, Man-Pyo;Wee, Kyu-Bum;Yeh, Hong-Jin
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.1
    • /
    • pp.44-52
    • /
    • 2000
  • This paper is contented with packet transmission scheduling problem for repeating all-to-all broadcasts in WDM optical passive-star networks in which there are N nodes and k wavelengths. It is assumed that each node has one tunable transmitter and one fixed-tuned receiver, and each transmitter can tune to k different wavelengths. The tuning delay represents the time taken for a transmitter to tune from one wavelength to another and represented as ${\delta}$(>0) in units of packet durations. We define all-to-all broadcast as the one where every node transmits packets to all the other nodes except itself. So, there are in total N(N-1) packets to be transmitted for an all-to-all broadcast. The optimal transmission scheduling is to schedule In such a way that all packets can be transmitted within the minimum time. In this paper, we propose the condition for optimal transmission schedules and present an optimal transmission scheduling algorithm for arbitrary values of N, k, and ${\delta}$ The cycle length of the optimal schedules is $max{[\frac{N}{k}](M-1)$, $k{\delta}+N-1$}.

  • PDF

GMPLS based Functional Models and Connection Admission Control Algorithms for Optical Burst Switched Networks (광 버스트 교환 망을 위한 GMPLS 기반 기능 모델과 연결 수락 제어 알고리즘)

  • 소원호;노선식;김영천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7B
    • /
    • pp.585-597
    • /
    • 2004
  • In this paper, we propose the functional models of optical burst switching (OBS) routers to apply GMPLS (Generalized Multiprotocol Label Switching) to optical networks based on OBS. In addition, we introduce a connection admission control (CAC) algorithms which are operated in this models and can accommodate the required QoS. Firstly, the characteristics of current GMPLS and OBS for the optical Internet are basically considered. With this consideration, the models are proposed to accept OBS features which include the recognition of data boundary with control information and the statistical multiplexing in terms of bursts. Secondly, we use an offset time decision (OTD) algorithm on behalf of controlling the connection admission with taking QoS parameters such as burst loss rate(BLR) and service-differentiation ratio(SDR) into consideration. The proposed CAC algorithms use the offered load of LSP (Label Switched Path), wavelength information, and QoS parameters as inputs of OTD algorithm. A call setup request will be accepted when the offset time decided by OTD algorithm is reasonable for guaranteeing its requested QoS. Simulation is used for performance evaluation. Results show the proposed schemes can guarantee the required QoS and those are better than the previous one in terms of channel utilization.

Separated Control Signaling Protocol for WDM Optical Networks (파장 분할 다중화 방식을 사용하는 광 전송망을 위한 분리 제어 신호 방식)

  • No, Seon-Sik;Kim, Su-Hyeon;So, Won-Ho;Kim, Yeong-Cheon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.1-11
    • /
    • 2000
  • In this paper, we propose a novel control signaling protocol that efficiently controls connection setup and increases the utilization of network resources. The proposed protocol, Separated Control Signaling Protocol(SCSP), separates bearer control from call control lot WDM optical networks. The main function of call control is to check the availability of network resources such as wavelengths and receivers at destination node. Bearer control is to reserve and assign wavelengths. The signaling architecture of this protocol consists of call controller and hearer controller The call controller handles call setup and release, activates the beater controller, and manages the status of call and bearer. The bearer controller reserves wavelengths, sets up bearer, tears down bearer. and notifies the status of beater to call controller. The state transition diagrams of each controller are designed. Using control messages and related primitives, the information flows for call setup and bearer setup, hearer teardown and call release, and reaction for setup failures are described to evaluate the performance. The simulation results show that the separated control signaling protocol is superior to conventional one in terms of call blocking probability and resource utilization.

  • PDF

Design of Network Attack Detection and Response Scheme based on Artificial Immune System in WDM Networks (WDM 망에서 인공면역체계 기반의 네트워크 공격 탐지 제어 모델 및 대응 기법 설계)

  • Yoo, Kyung-Min;Yang, Won-Hyuk;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4B
    • /
    • pp.566-575
    • /
    • 2010
  • In recent, artificial immune system has become an important research direction in the anomaly detection of networks. The conventional artificial immune systems are usually based on the negative selection that is one of the computational models of self/nonself discrimination. A main problem with self and non-self discrimination is the determination of the frontier between self and non-self. It causes false positive and false negative which are wrong detections. Therefore, additional functions are needed in order to detect potential anomaly while identifying abnormal behavior from analogous symptoms. In this paper, we design novel network attack detection and response schemes based on artificial immune system, and evaluate the performance of the proposed schemes. We firstly generate detector set and design detection and response modules through adopting the interaction between dendritic cells and T-cells. With the sequence of buffer occupancy, a set of detectors is generated by negative selection. The detection module detects the network anomaly with a set of detectors and generates alarm signal to the response module. In order to reduce wrong detections, we also utilize the fuzzy number theory that infers the degree of threat. The degree of threat is calculated by monitoring the number of alarm signals and the intensity of alarm occurrence. The response module sends the control signal to attackers to limit the attack traffic.