• Title/Summary/Keyword: WDM System

Search Result 263, Processing Time 0.019 seconds

Compensation for Distorted Signals by using Optimal Pump Light Power in WDM Systems with Non-midway Optical Phase Conjugator

  • Lee Seong-Real
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.542-549
    • /
    • 2005
  • In this paper, the optimal pump light power of optical phase conjugator (OPC) and the compensation characteristics of distorted WDM channel signals are numerically investigated, when the OPC with highly-nonlinear dispersion shifted fiber (HNL-DSF) not be placed at the mid-way of total transmission length. The total dispersion of former half section and latter half section is assumed to be same each other in this approach. It is confirmed that, in WDM transmission systems with OPC deviated from the mid-way, the pump light power for best compensation must be flexible selected depending on the OPC position. This optimal pump light power is gradually increased as the OPC is gradually closer to the receiver. Consequently, it is possible to establish the compensation system independent on the OPC position by setting optimal pump light power connected with the OPC position.

Bidirectional Bus-type WDM-EPON system over Single strand fiber using the same wavelength for each channel for Metro Ethernet (메트로 이더넷용 상하향 동일 파장의 단심 양방향 버스형 WDM-EPON 시스템)

  • 박노욱;전만식;서준혁;김건우;김영필;이종훈;송재원;강승민
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.312-313
    • /
    • 2003
  • 최근 인터넷 트래픽의 증가와 음성, 데이터, 동영상과 같은 다양한 멀티미디어 서비스의 영향으로 가입자망의 고속화가 요구되고 있다. 인터넷 트래픽을 효율적으로 가입자에게 제공하기 위해서는 광을 이용한 통신이 이루어져야 한다. 이를 위하여 다양한 기술들이 제시되고 있으며, 경제적인 측면과 구성의 용이성을 고려한 광 가입자망인 PON(Passive Optical Network)에 대한 관심이 고조되고 있다. 본 논문에서는 파장 분할 다중화 방식으로 단심 상하향 동일파장을 사용하여 소요되는 광섬유의 비용을 반으로 줄이고, 채널당 전송용량을 두 배로 높일 수 있는 매트로 이더넷용 단심 양방향 버스형 WDM-EPON 시스템에 대한 연구를 하고자 한다. (중략)

  • PDF

OATM/WDM Optical Access Network Using Header Decoder-Based Router for Next-Generation Communications

  • Park, Kihwan
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.335-342
    • /
    • 2016
  • We demonstrate an optical asynchronous transfer mode/wavelength division multiplexing (OATM/WDM) optical access network, using a router based on an optical header decoder to conduct next-generation communications. The router consists of a decoder or hardware analysis processing of the header bit and switches. The router in the OATM/WDM optical access network is a key technology by which to satisfy subscribers’ requests, including reliability, cost efficiency, high speed, large-capacity transmission, and elevated information security. In this study, we carry out experiments in which a header decoder delivers to 16 and 32 subscribers with a single wavelength in the router. These experiments confirm the decoder’s successful operation via hardware using 4 and 5 header bits. We propose that this system may significantly contribute toward the realization of an optical access network that provides high-quality service to subscribers of next-generation communications.

Design of WDM holographic demultiplexer using a High-Low thermal fixing (High-Low 열정착 기법을 이용한 WDM 홀로그래픽 역다중화기의 설계)

  • Park, Jung-Ho;Jeon, Seok-Hee;Jung, Sang-Hyuk;Jung, Jae-Won;Lee, Kwon-Yeon;Kim, Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.110-111
    • /
    • 2003
  • Holographic demultiplexer for the wavelength-division multiplexing optical communication system is proposed, and some experimental results are presented. To record the multiple holographic grating channels in the Fe:LiNbO$_3$ crystal, angular multiplexing and High-Low thermal fixing method are used.

  • PDF

Optical Add/Drop multiplkexer for WDM system using fiber bragg grating (광섬유 격자 소자를 이용한 WDM 시스템용 전광 분기 결합 장치의 구조 연구)

  • Kim, Se-Yoon;Lee, Sang-Bae;Choi, Sang-Sam;Chung, Joon;Kim, Sang-Yong;Park, Il-Jong;Jeong, Ji-Chai
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.106-112
    • /
    • 1997
  • We demonstrate a novel wavelength -division add/drop multiplexer employing fiber bragg gratings and polarization beam splitters. the multiplexer is easy to fbricate without any special technique such as UV trimming, and yet shows very stable performance with less than 0.3-dB crosstalk power penalty in a 0.8-nm-spaced, 2.5Gbps-per-channel WDM transmission system. We find that the rejection of adjacent channels is more than -6dB, and the signal leakage through output port is less than -34dB.

  • PDF

A New System Development for the Spectrum Inspection of Optical Filters (광필터의 스펙트럼 검사시스템 개발)

  • Kim, Seung-Chul;Kim, Gyung-Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.57-64
    • /
    • 2006
  • Optical filters in WDM are passive communication components used in case of transmitting and reflecting lights with specific wavelengths. In this paper, a novel mechanism for the automatic and optical alignment has been presented. It includes minimum axes not to be coupled each other. The automatic spectrum inspection system has been developed to improve the alignment time of reference optical ray, spectrum inspection time and inspection quality, simultaneously. It has been confirmed that the proposed spectrum inspection system is faster, more precise and more reliable than those based on the conventional handwork.

Dispersion-Managed Optical Transmission Link Adding of Non-Midway OPC (Non-Midway OPC를 추가한 분산 제어 광전송 링크)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.408-414
    • /
    • 2020
  • The method of overcoming the limitation of optical phase conjugator applied into optical long-haul link for transmitting high capacity wavelength division multiplexed (WDM) channels was investigated. The configuration of optical link was based on dispersion-managed link, in which dispersion compensating fiber inserted into each fiber span with single mode fiber, and optical phase conjugator was added into suitable location of link. The maximum number of fiber spans as a function of the launch power of WDM channels in optical link with optical phase conjugator placed at the proposed location was induced and compared for analyzing the compensation performance of the distorted WDM channels. It was confirmed that the more optical phase conjugator depart from the midway of total transmission length, the less the distorted WDM channels was compensated, however, it was also confirmed that the degradation of compensation can be overcome by the suitable value of residual dispersion per span and by the reasonable choice of fiber span controlling total dispersion accumulated in overall transmission link.

Performance of WDM Signals in Optical Links with Random Distribution of Residual Dispersion Per Span only in Half Transmission Section of Total Length (전송 반 구획에서만 중계 구간 당 분산이 랜덤하게 분포하는 광 링크에서의 WDM 신호의 성능)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.440-448
    • /
    • 2012
  • Optimal net residual dispersion (NRD) and effective launching power range of optical transmission links with optical phase conjugator (OPC) and dispersion management (DM) for compensating the distorted wavelength division multiplexing (WDM) signals due to interaction of group velocity dispersion (GVD) and optical nonlinear effects. WDM systems considered in this research have optical links with the random distribution of residual dispersion per span (RDPS) in each single mode fiber (SMF) spans of only one half transmission section for designing the adaptive optical transmission system configurations. It is confirmed that optimal NRD is 10 ps/nm and effective launching power range is obtained to be -8~1 dBm under NRD = 10 ps/nm in optical links with total dispersion controlled by precompensation. And, it is also confirmed that optimal NRD is -10 ps/nm and effective launching power range is obtained to be -7.5~1 dBm under NRD = -10 ps/nm in optical links with total dispersion controlled by postcompensation.

Numerical Optimization of NRZ 40Gbps WDM systems (NRZ 방식을 이용한 40Gbps WDM 시스템의 최적화)

  • Lee, Jong-Hyung;Han, Dae-Hyun;Lee, Yong-Jae;Choi, Byeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1860-1865
    • /
    • 2008
  • 40Gbps WDMSystems have been studied by numerical simulation to optimize their performance. Standard single mode fiber is assumed, and the most popular modulation format, NRZ, is used for the study. These assumptions are valid when existing WDM systems are required to upgrade their performance to 40Gbps. It is shown that the standard single mode fiber can transmit optical signals over 4800 (BER < 10-15) by optimizing optical and electrical filter characteristics at the receiver and by compensation of dispersion. In addition, when the system performance is mainly limited by ASE noise of EDFAs, it is found that flattop-shaped optical filter at the receiver gives a better result than Gaussian-shaped filter unless the insertion loss of the optical filter is larger than 5dB.

Tunable laser source using a self-seeding FP-LD (Self-seeding FP-LD을 이용한 파장 가변 레이저 광원)

  • Kim, Jung-Min;Lee, Hyuek-Jae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.104-109
    • /
    • 2021
  • In this paper, we experimentally demonstrate a self-seeding FP-LD (Fabry Perot Laser Diode) to verify the possibility of a new tunable light source that can be used in WDM-PON (Wavelength Division Multiplexing - Passive Optical Network) system. The conventional implementation of WDM-PON using a tunable light source has a disadvantage that the center wavelength of the AWG (Arrayed Waveguide Grating) device and the tunable light source must be precisely aligned. However, the proposed tunable light source has the advantage that the tunable wavelength is automatically aligned with the center wavelength of the AWG as well as simple structure. The implemented tunable light source had a tunable band of about 14 nm or more, and the maximum RIN (Relative Intensity Noise) of about -124 dB/Hz, which showed the possibility of modulating 10 Gb/s signal by an external modulator.