• Title/Summary/Keyword: WC

Search Result 1,031, Processing Time 0.046 seconds

Change of Particle Morphology and Ingredient Phase of WC and WC-Co Nanopowders Fabricated by Chemical Vapor Condensation during Subsequent Heat-Treatment (기상응축법으로 제조한 나노 WC및 WC-Co분말의 후속 열처리에 의한 상 및 협상 변화)

  • 김진천;하국현;김병기
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.124-129
    • /
    • 2004
  • Nanosized WC and WC-Co powders were synthesised by chemical vapor condensation(CVC) process using the pyrolysis of tungsten hexacarbonyl(W(CO)$_6$) and cobalt octacarbonyl(Co$_2$(CO)$_8$). The microstructural changes and phase evolution of the CVC powders during post heat-treatment were studied using the XRD, FE-SEM, TEM, and ICP-MS. CVC powders were consisted of the loosely agglomerated sub-stoichimetric WC$_{1-x}$ and the long-chain Co nanopowders. The sub-stochiometric CVC WC and WC-Co powders were carburized using the mixture gas of CH$_4$-H$_2$ in the temperature range of 730-85$0^{\circ}C$. Carbon content of CVC powder controlled by the gas phase carburization at 85$0^{\circ}C$ was well matched with the theoretical carbon sioichiometry of WC, 6.13 wt%. During the gas phase carburization, the particle size of WC increased from 20 nm to 40 nm and the long chain structure of Co powders disappeared.

WC-Co coating by cold spray deposition (Cold spray를 이용한 WC-Co 코팅)

  • 김형준;황순영;권영각
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.311-313
    • /
    • 2004
  • WC-12-17%Co powders with nano- and micro-structures were deposited by cold spray process using nitrogen and helium gases. The results show that there is no detrimental phase transformation and/or decarburization of WC by cold spray deposition as expected. It is also observed that nano-sized WC in the feedstock powder is maintained in the cold spray deposition. It is demonstrated that it is possible to fabricate the nano-structured WC-Co coating with low porosity and very high hardness (-2050 HV) by cold spray deposition with reasonable powder preheating.

  • PDF

Effect of Composition on Cutting Characteristics of Ti(C,N) Cermet Tool (Ti(C,N)계 서메트 공구의 조성변화가 절삭성능에 미치는 영향)

  • 박준석;김경재;김성원;권원태;강신후
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.144-150
    • /
    • 2003
  • When WC and group IV elements are added to Ti(C,N)-Ni substrate, microstructures of the cermet is changed. The microstructure gives direct effect on the property of the material. In this study, the amount of WC and group W elements of Ti(C,N) cermet tool was investigated. The composition of WC was changed from 5 to 20wt% to determine the effect of WC on the cutting performance of cermet tool. The more WC was added, the longer the tool life of the cermet tool was. The cermet with 20wt% WC showed the best fracture toughness. The effect of group W elements; ZrC, ZrN and HfC was also investigated by adding each of them to manufacture the cermet tool with fixed l4wt% WC composition. The cermet with 1wt% ZrC and 14wt% WC showed the best cutting performance among the investigated cermet tools.

The Determination of Stress Distribution in WC-Ni Cemented Carbide Composites by Neutron Diffraction

  • Seol, Kyeongwon
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.232-238
    • /
    • 1995
  • The thermal stress distribution of WC and Ni binder phases In WC-26st.%Ni and WC-6wt.%Ni composites has been investigated over the temperature range 100-900 K using a time-of-flight neutron diffractometer. To determine the stress distribution, the breadths of WC and Ni peaks in the reference powder and the composites were analyzed. The peak breadths were corrected for particle size effect using a procedure based on the integral peak breadth method of particle size-strain analysis. The result shows a broad range of strain, and thus stress, is present in the WC and Ni binder phases of the composites. The strain distribution of both phases broadens as the temperature decreases, and some fraction of total strain distribution of the WC phase remains tensile regardless of the temperature. The strain distribution of the WC phase broadens as the binder content increases, and that of Ni binder phase broadens as the binder content decreases, which means the strain distribution broadens as the absolute value of residual stress increase.

  • PDF

Development of Higher Wear Resistance WC Roll for Finishing Stands of Wire Rod Mill (선재 사상압연용 고내마모 텅스템카비아드롤 개발)

  • 이영민;조용근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.272-278
    • /
    • 1999
  • Tungsten Carbide(WC) Roll is widely used in finishing stands of wire rod mill. This report is about the manufacturing method of WC roll with excellent wear resistance. To enhance wear resistance, WC content has been increased to the maximum extent while binder content such as Co, Ni, Cr has been minimized. Part of WC is replaced with TiC having more wear resistant than WC. WTiC powder has been used to prevent weight unbalance resulting from the difference of specific weight when adding TiC. The roll manufactured by this method, is having more wear resistance than the existing rolls when applying to the final stand of the finishing mill. This report shows that WC is the critical factor of wear resistance in WC rolls and an approprite amount of TiC effects wear resistance and when adding TiC, using WTiC powder is better.

  • PDF

Studies on Elastic Deformation by X-ray Stress Measuremtnt of WC-Co Alloy (WC-Co합금의 X선 응력측정에 의한 탄성변형거동의 연구)

  • 부명환;오세욱;광조신
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.105-114
    • /
    • 1994
  • 초경합금은 기계적 성질이 다른 WC의 분상상과 Co의 결합상으로 구성되어 있다. 만일 이합금이 거시적으로 균일하게 변형을 하면, 각 상들은 이들의 응력상태에 따라 다르게 변형될 것이다. 따라서 WC-Co 합금의 변형특성과 강화기구를 명확히 알기 위해서는 각상의 미시적 변형과 파괴기구를 검토할 필요가 있다. 본 연구에서는 시편에 굽힘하중을 가하여, X선 회절로 분산상인 WC상 및 결합상인 Co상의 X선적 탄성정수와 응력정수를 측정하였다. WC-Co합금중의 WC상과 Co상의 상응력은 WC(112)면과 CO(311)면의 회절로서 결정하였다. 그리고 이 상응력들을 복합법칙의 적용가능성에 대하여 검토하였다.

  • PDF

Fabrication of Nano-sized WC/Co Composite Powder by Direct Reduction and Carburization with Carbon

  • Lee, Dong-Ryoul;Lee, Wan-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.642-643
    • /
    • 2006
  • Direct reduction and carburization process was thought one of the best methods to make nano-sized WC powder. The oxide powders were mixed with graphite powder by ball milling in the compositions of WC-5,-10wt%Co. The mixture was heated at the temperatures of $600{\sim}800^{\circ}C$ for 5 hours in Ar. The reaction time of the reduction and carburization was decreased as heating temperatures and cobalt content increased. The mean size of WC/Co composite powders was about 260 nm after the reactions. And the mean size of WC grains in WC/Co composite powders was about 38 nm after the reaction at $800^{\circ}C$ for 5 hours.

  • PDF

One Step Synthesis of Dense WC-20 vol.% Co Super Hard Material (한공정에 의한 치밀한 WC-20 vol.%Co 초경합금 제조)

  • 박충도;손인진;김환철;이영국
    • Journal of Powder Materials
    • /
    • v.8 no.4
    • /
    • pp.231-238
    • /
    • 2001
  • We combined Field-Activated Combustion Synthesis(FACS) with mechanical pressure to produce dense WC-20 vol.%Co composite in one step. The hardness, the fracture toughness and the relative density of the dense WC-20 vol.%Co were investigated. Under the application of 60 MPa pressure and 3000A current on the reactants, the relative density of WC-20 vol.%Co composite was 99.4%. The fracture toughness and hardness were $9.4 MPa.m^{1/2}$ and $1672kg\textrm{mm}^2$ respectively. The fracture toughness and hardness of WC-20 vol.%Co composite produced by FAPACS were lower than that of nanostructured composite, but similar to commercial ones. Therefore we concluded that the FAPACS method which can produce WC-20 vol.%Co within several minutes in one step is superior to conventional ones.

  • PDF

Anti-Corrosion Characteristics of WC-based Alloy Coatings Fabricated by HVOF Process - Polarization Characteristics in Acid Solution - (HVOF 용사법에 의해 제조된 WC계 합금 코팅층의 방식특성(I) - 산성용액에서의 분극특성 -)

  • Kim, Tae-Yong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.72-77
    • /
    • 2014
  • The aim of this study to investigate polarization characteristics of WC-based alloy coatings fabricated by high velocity oxygen fuel(HVOF) process. The coatings were fabricated by HVOF process with WC-CrC-Ni, WC-Co-Cr, WC-Co composite powders. Corrosion tests were carried out using potentiostat/galvanostat at solution with pH 2 and pH 6. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be analyzed from polarization curve. WC-Co-Cr coating showed more incorrodible characteristics than other coatings at solution pH 2. WC-CrC-Ni coating was more favorable anti-corrosion characteristics than other coatings at solution with pH 6.