• 제목/요약/키워드: WC

검색결과 1,033건 처리시간 0.033초

Synthesization of WC/Co Composite Powders Doped V and Cr by Mechanochemical Method

  • Im, Hoo-Soon;Hur, Jah-Mahn;Lee, Wan-Jae
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.646-647
    • /
    • 2006
  • Nano-sized WC particles in WC/Co composite powders were synthesized by mechanochemical method. The raw powders$(WO_3,\;Co_3O_4,\;VC,\;Cr_3C_2$ and graphite) were mixed by planetary milling for 30 hours. The compositions were WC-10 and -20 wt% Co added VC and $Cr_3C_2$. The direct reduction and carburization of the mixed powders were carried at $900\;^{\circ}C$ for 1 to 3 hours under flowing Ar gas. The mean size of WC particles in WC/Co composite powders was about 16 nm. The resultant powders were compacted and sintered at $1300{\sim}1360\;^{\circ}C$ for 0.5 hour. After sintering the mean size of WC particles was about 50 nm.

  • PDF

HVOF 용사법에 의해 제조된 WC계 합금 코팅층의 방식특성(II) - 알칼리 용액에서의 분극특성 - (Anti-Corrosion Characteristics of WC-based Alloy Coatings Fabricated by HVOF Process - Polarization Characteristics in Alkaline Solution -)

  • 김태용;김영식;김재동
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.40-44
    • /
    • 2014
  • The purpose of this paper is to investigate polarization characteristics of WC-based alloy coatings in alkaline solution. The coatings were fabricated with WC-CrC-Ni, WC-Co-Cr and WC-Co composite powders by HVOF process. Corrosion tests of coatings and substrate were carried out using potentiostat/galvanostat at solution with pH 8 and pH 13. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be studied from polarization curve, and corrosion behavior was analyzed by SEM and EDS. WC-Co-Cr coating and WC-CrC-Ni coating showed more favorable anti-corrosion characteristics than WC-Co coating and substrate at solution with pH 8 and pH 13.

HIP처리한 초미립 WC-(5~20) mass% Co 초경 합금의 미세조직과 기계적 성질 (Microstructures and Mechanical Properties of HIPed Submicron WC-(5~20) mass% Co Cemented Carbides)

  • 이승원;이완재
    • 한국분말재료학회지
    • /
    • 제5권4호
    • /
    • pp.279-285
    • /
    • 1998
  • The microstructures and mechanical properties of submicron WC-Co cemented carbides were investigated in relation to cobalt content. To inhibit the WC grain growth during sintering, VC was added as a inhibitor in each alloy with 3 mass% to the cobalt content. The WC-(5, 8, 10, 15, 20) mass% Co compacts were sintered at $1400^{\circ}C$ for 30 min in vacuum. Some of WC-(5, 8, 10) mass% Co sintered compacts were HIPed with 120 atm at 130$0^{\circ}C$ for 1 hr. The shrinkages of all HIPed alloys were increased without depending on the cobalt contents and the sintered densities of them. The relative densities of the alloys were increased with the cobalt content and HIPing. The less the cobalt content, the larger the WC grain. Many contiguities of WC grains were found in WC-5 mass% Co alloy. The sizes and numbers of pores in the alloys were decreased by HIPing. And also the strength and the hardness of each alloy were increased. The maximum hardness was about 18.95 GPa in the WC-5 mass% Co alloy HIPed and the maximum transverse-rupture strength (T.R.S.) 3.2 GPa in the WC-20 mass% Co alloy sintered.

  • PDF

Co첨가에 의한 WC의 비정상입성장 (Effect of Co additive on the Abnormal Grain Growth of WC)

  • 이동범;채기웅
    • 한국세라믹학회지
    • /
    • 제41권2호
    • /
    • pp.131-135
    • /
    • 2004
  • WC에 소량의 Co를 첨가하여 그에 따른 미세조직의 변화를 관찰하였다. 순수한 WC를 성형하여 그 윗부분에 Co를 올려놓고 195$0^{\circ}C$에서 소결을 행한 결과, WC시편에서는 Co상이 놓여 액상을 형성한 영역으로부터 거리에 따라 입자의 크기와 모양이 다른 활발한 비정상입성장이 관찰되었다. 그러나, Co상이 놓인 영역으로부터 떨어진 시편 아래 영역에서는 낮은 치밀화와 함께 비정상입성장은 일어나지 않았다. 즉, Co 액상량은 WC의 비정상입성장 현상에 지대한 영향을 주었으며, 이러한 비정장입정장 현상은 2차원 핵생성 기구와 그에 따른 입성장기구로 설명이 가능하였다.

분말사출성형에 의한 WC-Co 계 milling insert 제조 (WC-Co Milling Inserts Manufactured by Powder Injection Molding)

  • 성환진
    • 한국분말재료학회지
    • /
    • 제6권1호
    • /
    • pp.88-95
    • /
    • 1999
  • The purpose of this study is to investigate the manufacturing feasibility of WC-Co milling inserts via Powder Injection Molding (PIM) process. WC-Co is used in a wide variety of cutting tools due to its high hardness, stiffness, compressive strength and wear resistance properties. WC-Co parts for a high stress application were conventionally produced by the press and sinter method, which were Iimited to 2 dimensional shapes. Manufacturing WC-Co parts for a high stress application by PIM implies that tool efficiency can be highly improved due to increased freedom is design. P30 grade WC powder (WC-Co-TiC-TaC system) was mixed with RIST-5B133 binder and injection molded into milling inserts (Taegu Tech. Model WCMX 06T 308). The mean grain size of the powder was about 0.8$\mu$m. Injection molded specimens were debound by solvent extraction and thermal degradation method at various conditions. The specimens were sintered at 140$0^{\circ}C$ for 1 hr in vacuum. Carbon content, weight loss, dimensional change, and macro defects of the specimen were carefully monitored at each stage of the PIM process. PIMed WC-Co milling inserts reached 100% full density after sinteing. Its mechanical properties and micro-structures were comparable with the press and sintered milling insert. Carbon content of the sintered WC-Co insert was mainly determained by the atmosphere of thermal debinding. By controlling powder loading and injection molding condition, dimensional accuracy could be obtained within 0.4%. We confirm that PIM can not only be an alternative manufacturing method for WC-Co parts economically but also provide a design freedom for more effieient cutting tools.

  • PDF

펄스전류활성 소결 공정을 이용한 Ni 함량변화에 따른 WC 소재의 특성평가 (Characteristic Evaluation of WC Hard Materials According to Ni Content Variation by a Pulsed Current Activated Sintering Process)

  • 박현국
    • 한국재료학회지
    • /
    • 제30권12호
    • /
    • pp.672-677
    • /
    • 2020
  • Expensive PCBN or ceramic cutting tools are used for the processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have a problem of breaking easily due to their high hardness but low fracture toughness. To solve this problem, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and researches on various tool materials are being conducted. In this study, WC-5, 10, and 15 wt%Ni hard materials for difficult-to-cut cutting materials are densified using horizontal ball milled WC-Ni powders and pulsed current activated sintering method (PCAS method). Each PCASed WC-Ni hard materials are almost completely dense, with a relative density of up to 99.7 ~ 99.9 %, after the simultaneous application of pressure of 60 MPa and electric current for 2 min; process involves almost no change in the grain size. The average grain sizes of WC and Ni for WC-5, 10, and 15 wt%Ni hard materials are about 1.09 ~ 1.29 and 0.31 ~ 0.51 µm, respectively. Vickers hardness and fracture toughness of WC-5, 10, and 15 wt%Ni hard materials are about 1,923 ~ 1,788 kg/mm2 and 13.2 ~ 14.3 MPa.m1/2, respectively. Microstructure and phase analyses of PCASed WC-Ni hard materials are performed.

방전플라즈마 소결 공정을 이용한 WC-Co-B4C 소재의 기계적 특성평가 (Mechanical Property Evaluation of WC-Co-B4C Hard Materials by a Spark Plasma Sintering Process)

  • 이정한;박현국
    • 한국재료학회지
    • /
    • 제31권7호
    • /
    • pp.397-402
    • /
    • 2021
  • In this study, binderless-WC, WC-6 wt%Co, WC-6wt% 1 and 2.5 B4C materials are fabricated by spark plasma sintering process (SPS process). Each fabricated WC material is almost completely dense, with a relative density up to 99.5 % after the simultaneous application of pressure of 60 MPa. The WC added Co and Co-B4C materials resulted in crystalline growth. The WC with HCP crystal structure has respective interfacial energy (basal facet direction: 1.07 ~ 1.34 J·m-2, prismatic direction: 1.43 ~ 3.02 J·m-2) that depends on the grain growth direction. It is confirmed that the continuous grain growth, biased by the basal facet, which has relatively low energy, is promoted at the WC/Co interface. As abnormal grain growth takes place, the grain size increases more than twice from 0.37 to 0.8 um. It is found through analysis that the hardness property also greatly decreases from about 2661.4 to 1721.4 kg/mm2, along with the grain growth.

급속 소결 공정에 의한 초미립 WC-10Co와 WC-10Fe 초경재료 제조와 기계적 성질 (Mechanical Properties and Consolidation of Ultra-Fine WC-10Co and WC-10Fe Hard Materials by Rapid Sintering Process)

  • 정인균;박정환;도정만;김기열;우기도;고인용;손인진
    • 대한금속재료학회지
    • /
    • 제46권4호
    • /
    • pp.223-226
    • /
    • 2008
  • The comparison of sintering behavior and mechanical properties of ultra-fine WC-10wt.%Co and WC-10wt.%Fe hard materials produced by high-frequency induction heated sintering (HFIHS) was accomplished using ultra fine powder of WC and binders(Co, Fe). The advantage of this process allows very quick densification to near theoretical density and prohibition of grain growth in nano-structured materials. Highly dense WC-10Co and WC-10Fe with a relative density of up to 99% could be obtained with simultaneous application of 60 MPa pressure and induced current within 1 minute without significant change in grain size. The hardness and fracture toughness of the dense WC-10Co and WC-10Fe composites produced by HFIHS were investigated.

단일공정으로 WC 및 치밀한 WC-10 vol.%Co 초경재료의 제조 및 기계적 성질 (One-Step Synthesis of WC and Dense WC-10 vol.%Co Hard Materials and Their Mechanical Properties)

  • 김환철;오동영;정정웅;송인진
    • 한국분말재료학회지
    • /
    • 제10권2호
    • /
    • pp.108-117
    • /
    • 2003
  • WC and dense WC-10 vol%Co materials with grain size of~1${\mu}m$ were synthesized by high-frequency induction heated combustion synthesis (HFIHCS) method in one step from elemental powders of W, C and Co within several minutes. Simultaneous combustion synthesis and densification were accomplished under the combined effects of an induced current and mechanical pressure. In the absence of cobalt additive, WC can be formed, but its relative density was low (about 73%) under simultaneous application of a 60 MPa pressure and the induced current. However, in the presence of 10 vol.%Co, the relative density increased to 99% under the same experimental condition. The percentages of the total shrinkage occurring before and during the synthesis reaction of WC-10 vol.%Co were 5% and 51%, respectively. The fracture toughness and hardness values of WC-10 vol.%Co were 10 MPa . m$^{1/2}$ and 1840 kg/$mm^2$, respectively.

Mechanical Properties and Microstructures in WC-12%Co/Low Carbon Steel Metal Matrix Composites(MMC) Welding Overlay

  • 임희식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • 제21권2호
    • /
    • pp.50-56
    • /
    • 2003
  • Metal matrix composites(MMC) consist of metal matrix into which is distributed a second solid phase. The normal intension is to develop a material with superior mechanical properties (for example increased toughness, stiffness and wear resistance) compared to those inherent in the matrix component. In this study, WC-12%Co/low carbon steel MMC overlays have been prepared by Gas Metal Arc Welding(GMAW) according to feeding rate of WC-12%Co grit. The macro and microstructures were examined using optical microscopy (OM) and scanning electron microscopy(SEM) each other. The characteristics of hardness and wear resistance have been investigated. WC-12%Co/low carbon steel MMC overlays which have been taken good beads without porosity and cracks were manufactured by method of GMAW. Matrix of overlayed surface was seen as fish bone and faceted dendrite structures. It was known that structures were iron tungsten carbides, Fe$_{6}$W$_{6}$C which have been occurred by melting of WC-12%Co grits. After MMC had been tested by block-roll wear test it was known that WC-12%Co/low carbon steel MMC has a excellent wear resistance by exiting Fe6w6c and WC-12%Co grit. The consequence was that region of overlay with Fe$_{6}$W$_{6}$C phase has been showed a model of adhesive wear, but region of overlay with WC-12%Co grit was restrained as a result of mechanism that wear of WC-12%Co grit is not adhesive but fracture.racture.