• Title/Summary/Keyword: WC(Co 0.5%)

Search Result 66, Processing Time 0.026 seconds

Synthesization of WC/Co Composite Powders Doped V and Cr by Mechanochemical Method

  • Im, Hoo-Soon;Hur, Jah-Mahn;Lee, Wan-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.646-647
    • /
    • 2006
  • Nano-sized WC particles in WC/Co composite powders were synthesized by mechanochemical method. The raw powders$(WO_3,\;Co_3O_4,\;VC,\;Cr_3C_2$ and graphite) were mixed by planetary milling for 30 hours. The compositions were WC-10 and -20 wt% Co added VC and $Cr_3C_2$. The direct reduction and carburization of the mixed powders were carried at $900\;^{\circ}C$ for 1 to 3 hours under flowing Ar gas. The mean size of WC particles in WC/Co composite powders was about 16 nm. The resultant powders were compacted and sintered at $1300{\sim}1360\;^{\circ}C$ for 0.5 hour. After sintering the mean size of WC particles was about 50 nm.

  • PDF

Friction and Wear Behaviors of WC-Co/WC-Co Pairs in Air

  • Hosokawa, H.;Nakajima, T.;Shimojima, K.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.629-630
    • /
    • 2006
  • To investigate sliding friction and wear behaviors of WC-Co/WC-Co pairs containing different WC grain sizes, the ball-on-disc test in air were carried out, where WC grain sizes a $0.5\;{\mu}m$ (F.G.) and $1.5\;{\mu}m$ (C.G.). The wear volume of F.G. pin for F.G. pin/C.G. disc is larger than that of F.G. pin for F.G. pin/F.G. disc due to higher friction coefficient, and the surfaces after wear test are richer in oxygen compared to those before test. Furthermore, the wear debris, which is composed of nona-scale grain, after the wear test are remarkably richer in oxygen than to those before test.

  • PDF

Storage of Strawberries Using Low Density Polyethene Film Filled with Silver-coated Ceramic and/or Chitin (은처리 세라믹과 키틴을 첨가한 LDPE 필름을 이용한 딸기의 저장)

  • 은종방;김종대
    • Food Science and Preservation
    • /
    • v.4 no.3
    • /
    • pp.251-258
    • /
    • 1997
  • The quality changes of strawberries packaged using low density polyethylene (LDPE) film filled with 3% silver-coated ceramic (WC30) and filled with it and 0.1% chitin (CWC) were investigated during storage at 2$0^{\circ}C$ for 5 days. In gas composition within film bag, CWC and WC30 kept higher CO2 concentration than LDPE without silver-coated ceramic and chitin (CO) did during 5 day storage. The weight loss of strawberries during storage was the smallest in WC30 and the largest in CWC in 5 days. Hardness of strawberries was the highest in WC30 and the lowest in CO during 5 day storage. pH of strwberries was increased a little until 1 day and was not changed after 1 day storage, and soluble solid content was not changed during storage. Vitamin C content was decreased significantly until 2 day storage and decreased a little after 2 days. There is no differences in the change of vitamin C content among the packaging materials. In color measurement, lightness was the highest in WC 30 and in sensory evaluation, all characteristics also had the highest scores in WC30. In conclusion, better quality of straberries was shown in WC30 than in CWC and CO during storage.

  • PDF

Fabrication and Mechanical Properties of WC-Mo2C-Co Hard Materials by the Pulsed Current Activated Sintering Method (펄스 전류 활성 소결법을 이용한 WC-Mo2C-Co 소결체 제조 및 기계적 특성 평가)

  • Youn, Hee-Jun;Bang, Han-Sur;Bang, Hee-Seon;Oh, Ik-Hyun;Park, Hyun-Kuk
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.921-929
    • /
    • 2012
  • The pulsed current activated sintering method (PCAS) is a new rapid sintering method that was developed recently for fabricating ceramics and composites. This method combines a high temperature for a short time with pressure application. In this work, PCAS was used to fabricate $WC-5wt%Mo_2C-5wt%$ Co hard material using WC, $Mo_2C$, and Co. The $WC-Mo_2C-Co$ was almost completely dense with a relative density of up to 100% after the simultaneous application of a pressure of 60 MPa and electric current for 11 min without grain growth. The average grain size of WC that was produced through PCAS was about $0.5-0.6{\mu}m$. The vickers hardness and fracture toughness of the $WC-5wt%Mo_2C-5wt%$Co hard materials were about $2453.5kg/mm^2$ and $7.9MPa{\cdot}m^{1/2}$, respectively, for 60 MPa at $11200^{\circ}C$.

The Effect of Heat-treatment on Brazing Characteristics of WC-9%Co/SUJ2 Steel (WC-9%Co와 SUJ2강의 접합특성에 미치는 열처리의 영향)

  • 정하윤;김종철;박경채
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.56-63
    • /
    • 1997
  • In The study, the bonding of WC-9%Co to SUJ2 steel using Ag-Cu-Zn-Cd insert metal has performed to investigate the bonding properties by heat-treatment. Bonding was brazed for 5-30min at 95$0^{\circ}C$, performed solution treatment for 5 min at 85$0^{\circ}C$ and sustained subsequently oil quenching. To investigate the effect of heat-treatment, tempering was executed at $600^{\circ}C$ for 30 min after oil quenching. Mechnical properties and chemical compositions on the brazed bonding interface were investigated by means of microstructural observation, 4-point bending test and EDS and XRD measurements. The results obtained were as follows. 1) The bonding strength of WC-9%Co/SUJ2 joints by Ag-Cu-Zn-Cd insert metal obtained about 78, 117 and 72MPa after brazing for 5, 20 and 30 min at 95$0^{\circ}C$. And the highest bonding strength obtained about 131MPa after brazing for10 min at 95$0^{\circ}C$ 2) Higher bonding strength of 288MPa was obtained in the joint that brazed for 10 min at 95$0^{\circ}C$, and carried out tempering for 30 min at $600^{\circ}C$ subsequently. 3) Fracture of joint brazed by Ag-Cu-Zn-Cd insert metal for 5, 10, 20 and 30 min created WC-9%Co/SUJ2 interface. The joint that brazed for 10 min at 95$0^{\circ}C$ and then tempered for 30 min at $600^{\circ}C$ was fractured at the site of WC-9%Co.

  • PDF

Friction and Wear of Pressureless Sintered Ti(C,N)-WC Ceramics

  • Park, Dong-Soo;Yun, Shin-Sang;Han, Byoung-Dong;Kim, Hai-Doo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.211-212
    • /
    • 2002
  • Friction and wear of pressureless sintered Ti(C,N)-WC ceramics were studied using a ball-on-reciprocating flat apparatus in open air. The silicon nitride ball and the cemented carbide (WC-Co) ball were used against the Ti(C,N)-WC plate samples. The friction coefficients of the Ti(C,N)-WC samples against the silicon nitride ball and the cemented carbide ball were about 0.57 and 0.3, respectively. The wear coefficient of the sample without WC addition was 5 times as large as that of the sample with 10 mole % WC addition when tested against the silicon nitride ball under 98 N. The higher wear coefficient of Ti(C,N)-0WC was explained in part by larger grain size. Wear occurred mainly by grain dislodgment after intergranular cracking mainly caused by the accumulated stress within the grains.

  • PDF

The Enhancement of Corrosion Resistance for WC-Co by Ion Beam Mixed Silicon Carbide Coating

  • Yeo, Sun-Mok;Kim, Dong-Jin;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.101-101
    • /
    • 2010
  • A strong adhesion of a silicon carbide (SiC) coating on a WC-Co substrate was achieved through an ion beam mixing technique and the corrosion resistance of the SiC coated WC-Co was investigated by means of a potentiodynamic electrochemical test. In the case of 1 M NaOH solution, a corrosion current density for a SiC coated WC-Co with a heat treatment at $500^{\circ}C$ displays about 50 times lower than that for the as-received WC-Co. However, in the case of 0.5 M H2SO4 solution, a corrosion current density for a SiC coated WC-Co displays about 3 times lower than that for as-received WC-Co. We discussed the physical reasons for the changes of the corrosion current densities at the different electrolytes.

  • PDF

Enhanced Corrosion Resistance of WC-Co with an Ion Beam Mixed Silicon Carbide Coating

  • Yeo, Sun-Mok;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.193-193
    • /
    • 2011
  • Strong adhesion of a silicon carbide (SiC) coating to a WC-Co substrate was achieved through an ion beam mixing technique and the corrosion resistance of the SiC coated WC-Co was investigated by means of a potentiodynamic electrochemical test. In a 1 M NaOH solution, the corrosion current density of SiC-coated WC-Co after heat treatment at 500$^{\circ}C$ was about 50 times lower than that for the as-received WC-Co. In addition, the corrosion resistance systematically increases with increasing the SiC coating thickness. On the other hand, for a 0.5 M H2SO4 solution, the corrosion current density for SiC-coated WC-Co was about 3 times lower than that for the as-received WC-Co. We discuss the physical reasons for the changes in the corrosion current density with the different electrolytes.

  • PDF

A Study of UltraRne WC-l0wt.%Co Cemented Carbides Powders Properties Fabricated by direct Carburization (직접침탄법에 의해 제조된 초미립 WC-10wt. % Co 초경 합금 분말의 특성 연구)

  • 권대환
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.178-183
    • /
    • 1998
  • Ultrafine WC-10wt.%Co cemented carbides powders were synthesized by direct carburization. W-Co composite powders and carbon black powders were mixed by wet ball milling and dried. The mixed powders were heated to 800 $^{\circ}C$ with heating rate of 8.2$^{\circ}C$/min and held for various times in flowing $H_2$. For carbon addition of 140%, the carburization was completed by heating at 80$0^{\circ}C$ for 4 hours. The carburization time decreased with increasing amount of carbon and carburization was completed by heating at 800 $^{\circ}C$ for 2 hours with carbon addition of 150%. WC-10 wt%Co cemented carbides powders fabricated by direct carburization have nanoscale WC($\/leqq$100 nm) size.

  • PDF

Surface Modification of WC-Co and SCM415 by the Ion Bombardment Process of Filtered Vacuum Arc Plasma (자장 여과 아크 이온빔 식각 공정을 이용한 WC-Co 및 SCM415 금속 소재 표면 구조 제어 연구)

  • Lee, Seung-Hun;Yoon, Sung-Hwan;Kim, Do-Geun;Kwon, Jung-Dae;Kim, Jong-Kuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.80-85
    • /
    • 2010
  • The surfaces of WC-Co and SCM415 were etched to form a micro size protrusion for oil based ultra low friction applications using an ion bombardment process in a filtered vacuum arc plasma. WC-Co species showed that a self-patterned surface was available by the ion bombarding process due to the difference of sputtering yield of WC and Co. And the increasing rate of roughness was 0.6 nm/min at -600 V substrate bias voltage. The increasing rate of roughness of SCM415 species was 1.5 nm/min at -800 V, but the selfpatterning effect as shown in WC-Co was not appeared. When the SCM415 species pretreated by electrical discharge machining is etched, the increasing rate of roughness increased from 1.5 nm/min to 40 nm/min at -800 V substrate bias voltage and the uniform surface treatment was available.