• Title/Summary/Keyword: W-doped $In_2O_3$

Search Result 144, Processing Time 0.027 seconds

Microstructure and Electrical Properties of W-doped $\textrm{TiO}_2$ (W를 첨가한 $\textrm{TiO}_2$의 미세구조 및 전기적 성질)

  • Baek, Seung-Bong;Lee, Sun-Il;Kim, Myeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 1999
  • The electrical conductivity of TiO$_2$ doped with 0.05~1.5mol% WO$_3$ was measured in the oxygen partial pressure range of 10\ulcorner~10\ulcorner atm and temperature range of 1100~130$0^{\circ}C$ to investigate the defect types and the electrical properties. The grain size and density were increased as the liquid phase was formed by the doped WO$_3$. The secondary phase and WO$_3$peaks at the sample doped up to 4.0 mol% were not detected from the XRD results. The data(log$\sigma$/logPo$_2$) over 110$0^{\circ}C$ were divided into the four regions. From these experimental results, we proposed the following defect regions. 1) Magneli phase(extended defect), 2) Reduced rutile region which is similar to the behavior of undoped rutile, 3) Nearly stoichiometric Ti\ulcornerW\ulcornerO$_2$region in which extra charge of W\ulcorner cation is expected to be compensated by an electron, 4) Overstoichiometric Ti\ulcornerW\ulcornerO\ulcorner region which is a metal deficiency not to be observed in pure TiO$_2$. The electrical conductivity of w-doped TiO$_2$ was influenced by the measuring temperature, oxygen partial pressure, and the dopig content.

  • PDF

Preparation of $SnO_2$ Semiconducting Gas Sensor by Wet Process (습식방법에 의한 $SnO_2$ 반도체 가스센사 제조)

  • 전병식;김홍대;최병현;최성근
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.3
    • /
    • pp.53-61
    • /
    • 1986
  • A gas sensor which has been made by wet process had fabricated by coating each of the mixture on alumina tube and firing at 85$0^{\circ}C$ for 3hrs. A gas concentration such $H_2$, CO, $C_3H_8$, $C_2H_2$ and $CH_4$ vs its detection voltage characteristics has been in-vestigated on $SnO_2-In_2O_3-MgO$ system doped with PdO, $La_2O_3$, $ThO_2$, NiO and $Nb_2O_5$ The optimum sensitivity composition for various gases were 90w/o $SnO_2$-9w/o $In_2O_3$-1w/o MgO for $H_2$, $C_2H_2$ CO and $C_3H_8$ and 95w/o $SnO_2$-4w/o $In_2O_3$-1w/o MgO for $CH_4$. The sample which has been made by wet process than dry process had predominated sensitivity for each gases and particle size of the sample coprecipitated with PH=9 was 0.1${\mu}{\textrm}{m}$ The $SnO_2$-In2_O_3-MgO$ system doped with 2w/o $Nb_2O_5$ and NiO was the most sensitive for $H_2$ and $C_2H_2$ gas. In $SnO_2$-In2_O_3-MgO$ system doped with $ThO_2$ the sensitivity of $H_2$ gas was decreased but CO gas was in-creased when dopant con was increased.

  • PDF

Effect of sputtering parameters and targets on properties of ZnO:Al thin films prepared by reactive DC magnetron sputtering (직류 반응성 sputtering법으로 제막된 ZnO:Al 박막의 물성에 미치는 증착조건 및 타겟의 영향)

  • 유병석;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.592-598
    • /
    • 1998
  • AZO(Aluminum doped Zinc Oxide) thin films were fabricated by reactive DC magnetron sputtering method using zinc metal target (Al 2%) and zinc oxide target ($Al_2O_3\;2%$) respectively. The intermediate condition with optimum transmittance and conductivity was obtained by controlling the sputtering parameters. Oxygen gas ratio for this condition was $0.5{\times}10^{-2}~1.0{\times}10^{-2}$ in oxide target and. In case of metal target, this optimum oxygen gas ratio at the applied power of 0.6 kW and 1.0 kW was 0.215~0.227 and 0.305~0.315, respectively. The resistivity of AZO film deposited was obtained $1.2~1.4{\times}10^{-3} {\Omega}{\cdot}$cm as deposited state regardless of target species.

  • PDF

Structural, Optical and Electrical Properties of N-doped ZnO Nanofilms by Plasma Enhanced Atomic Layer Deposition (플라즈마 원자층 증착 방법을 이용한 N-doped ZnO 나노박막의 구조적.광학적.전기적 특성)

  • Kim, Jin-Hwan;Yang, Wan-Youn;Hahn, Yoon-Bong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.357-360
    • /
    • 2011
  • N-doped ZnO nanofilms were prepared by plasma enhanced atomic layer deposition method. $Zn(C_{2}H_{5})_{2}$, $O_{2}$ and $N_{2}$ were used as Zn, O and N sources, respectively, for N-doped ZnO films under variation of radio frequency (rf) power from 50-300W. Structural, optical and electrical properties of as-grown ZnO films were investigated with Xray diffraction(XRD), photoluminescence(PL) and Hall-effect measurements, respectively. Nitrogen content and p-type conductivity in ZnO nanofilms increased with the rf power.

Improvement of Long-term Stability in $SnO_2$ Based Gas Sensor for Monitoring Offensive Odor

  • Park, Jong-Hun;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.304-308
    • /
    • 2000
  • WO$_3$/SnO$_2$ceramics has been suggested as an effective sensing material for monitoring offensive odor or pollutant gases. This work was focussed on improving long-term stability, which has been a principal problem generally taking place in SnO$_2$semiconductor gas sensor. Miniaturized thick film gas sensors were fabricated by screen printing technique. Two types of sensor materials, W doped SnO$_2$and WO$_3$mixed SnO$_2$, were comparatively investigated on those long-term stability and sensitivites to several gases. Small amount of W doping(0.1 mol%) into SnO$_2$largely improved the long-term stability. The W(0.1 mol%) doped SnO$_2$gas sensor had higher sensitivities to both acetone and alcohol compared with WO$_3$(5 wt%) mixed SnO$_2$gas sensor. On the contrary, WO$_3$(5 wt%) mixed SnO$_2$gas sensor showed more superior sensitivity to cigarette smoke due to larger W content.

  • PDF

Microstructural, Electrical and Optical Features of ZnO Thin Films Prepared by RF Sputter Techniques

  • Cho, Nam-Hee;Park, Jung-Ho;Kim, Byung-Jin
    • The Korean Journal of Ceramics
    • /
    • v.7 no.2
    • /
    • pp.85-92
    • /
    • 2001
  • Thin films of ZnO and Al doped ZnO were prepared by rf magnetron sputter techniques. When the oxygen fraction in Ar-O$_2$ sputter gas was about 2.0%, the films exhibited the composition of Zn:O=1.05:1. The films prepared at 250 W contain larger grains than the films grown at 100 W. However, high deposition rate seems to deteriorates the crystallinity as well as Al-substitution, resulting in lower concentration of mobile electrons. The Al-doped ZnO films which were deposited at $500^{\circ}C$ show resistance of 1$\times$10$^-2$ Wcm; optical band gap of the films ranges from 3.25 to 3.40 eV. These electrical and optical features are related with microstructural as well as crystalline characteristics of the films.

  • PDF

Dy co-doping effect on photo-induced current properties of Eu-doped SrAl2O4 phosphor (Eu 도핑 SrAl2O4 형광체의 광 여기 전류 특성에 대한 Dy 코-도핑 효과)

  • Kim, Sei-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • $Eu^{2+}$-doped ${SrAl_2}{O_4}$ and $Eu^{2+}$, $Dy^{3+}$ co-doped ${SrAl_2}{O_4}$ phosphors have been synthesized by conventional solid state method. Photocurrent properties of $Eu^{2+}$ doped ${SrAl_2}{O_4}$ and $Eu^{2+}$, $Dy^{3+}$ co-doped ${SrAl_2}{O_4}$ phosphors, in order to elucidate $Dy^{3+}$ co-doping effect, during and after ceasing ultraviolet-ray (UV) irradiation have been investigated. The photocurrent of $Eu^{2+}$, $Dy^{3+}$ co-doped ${SrAl_2}{O_4}$ phosphors during UV irradiation was 4-times lower than that of $Eu^{2+}$-doped ${SrAl_2}{O_4}$ during UV irradiation, and 7-times higher than that of $Eu^{2+}$-doped ${SrAl_2}{O_4}$ after ceasing UV irradiation. The photocurrent results indicated that holes of charge carriers captured in hole trapping center during the UV irradiation and liberated after-glow process, and made clear that $Dy^{3+}$ of co-dopant acted as a hole trap. The photocurrent of ${SrAl_2}{O_4}$ showed a good proportional relationship to UV intensity in the range of $1{\sim}5mW/cm^2$, and $Eu^{2+}$-doped ${SrAl_2}{O_4}$ was confirmed to be a possible UV sensor.

W 도핑된 ZnO 박막을 이용한 저항 변화 메모리 특성 연구

  • Park, So-Yeon;Song, Min-Yeong;Hong, Seok-Man;Kim, Hui-Dong;An, Ho-Myeong;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.410-410
    • /
    • 2013
  • Next-generation nonvolatile memory (NVM) has attracted increasing attention about emerging NVMs such as ferroelectric random access memory, phase-change random access memory, magnetic random access memory and resistance random access memory (RRAM). Previous studies have demonstrated that RRAM is promising because of its excellent properties, including simple structure, high speed and high density integration. Many research groups have reported a lot of metal oxides as resistive materials like TiO2, NiO, SrTiO3 and ZnO [1]. Among them, the ZnO-based film is one of the most promising materials for RRAM because of its good switching characteristics, reliability and high transparency [2]. However, in many studies about ZnO-based RRAMs, there was a problem to get lower current level for reducing the operating power dissipation and improving the device reliability such an endurance and an retention time of memory devices. Thus in this paper, we investigated that highly reproducible bipolar resistive switching characteristics of W doped ZnO RRAM device and it showed low resistive switching current level and large ON/OFF ratio. This may be caused by the interdiffusion of the W atoms in the ZnO film, whch serves as dopants, and leakage current would rise resulting in the lowering of current level [3]. In this work, a ZnO film and W doped ZnO film were fabricated on a Si substrate using RF magnetron sputtering from ZnO and W targets at room temperature with Ar gas ambient, and compared their current levels. Compared with the conventional ZnO-based RRAM, the W doped ZnO ReRAM device shows the reduction of reset current from ~$10^{-6}$ A to ~$10^{-9}$ A and large ON/OFF ratio of ~$10^3$ along with self-rectifying characteristic as shown in Fig. 1. In addition, we observed good endurance of $10^3$ times and retention time of $10^4$ s in the W doped ZnO ReRAM device. With this advantageous characteristics, W doped ZnO thin film device is a promising candidates for CMOS compatible and high-density RRAM devices.

  • PDF

DC/RF Magnetron Co-Sputter를 이용하여 성막한 유기 태양 전지용 Si-Doped $In_2O_3$ (ISO) 박막의 특성 연구

  • Lee, Hye-Min;Gang, Sin-Bi;Jeong, Gwon-Beom;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.327-327
    • /
    • 2013
  • 본 연구에서는 $SiO_2$ Target과 $In_2O_3$ Target으로 co-sputtering방법을 이용해 증착한 Si-doped $In_2O_3$ (ISO) 박막의 Si 도핑 농도에 따른 전기적, 광학적, 구조적 특성에 대해 연구하였고, 이를 유기태양 전지(OPVs) 에 적용함으로써 그 가능성을 타진하였다. $In_2O_3$ target의 DC power를 100 W로 고정시킨 채 $SiO_2$ target의 RF power 크기를 20~60 W 변화시키면서 상온에서 실험을 진행한 결과 최적 조건은 박막의 두께가 200 nm일 때 Working pressure는 3 mTorr이고, RF power는 50 W이었다. 이 조건으로 제작된 ISO 박막은 550 nm에서 81.51%의 광투과율과 51.91 Ohm/sq.의 비교적 낮은 면저항이 나타남을 Hall measurement 및 UV/Vis spectroscopy 분석을 통해 알 수 있었다. 또한 X-ray diffraction 분석법과 Transmission Electron Microscope 분석법을 통해 $SiO_2$ 도핑 power가 50 W 이상으로 증가할 경우 ISO 박막의 결정성이 감소하여 완벽한 비정질상의 ISO 투명박막이 형성됨을 확인할 수 있었다. 비정질 특성을 갖는 ISO 투명 전극을 이용하여 유기 박막형 태양전지를 제작한 결과 Voc (0.576 V), Jsc (7.671 mA/$cm^2$), FF (62.96%), PCE (2.78%)의 특성을 나타냄으로서 co-sputtering 공정을 통해 최적화된 ISO 박막을 유기 박막형 태양전지에 적용함으로써 광전소자로의 적용 가능성을 확인할 수 있었다.

  • PDF

Thermal resistance effect of graphene doped zinc oxide nanocomposite in fire retardant epoxy coatings

  • Rao, Tentu Nageswara;Hussain, Imad;Riyazuddin, Riyazuddin;Koo, Bon Heun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.411-417
    • /
    • 2019
  • Graphene doped zinc oxide nanoparticles (G-ZnO) were prepared using modified hummer's technique together with the ultrasonic method and characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), fourier-transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM). Different samples of epoxy resin nanocomposites reinforced with G-ZnO nanoparticles were prepared and were marked as F1 (without adding nanoparticles), F2 (1% w/w G-ZnO), and F3 (2% w/w G-ZnO) in combination of ≈ 56:18:18:8w/w% with epoxy resin/hardener, ammonium polyphosphate, boric acid, and Chitosan. The peak heat release rate (PHRR) of the epoxy nanocomposites was observed to decrease dramatically with the increasing G-ZnO nanoparticles. However, the LOI values increased significantly with the increase in wt % of G-ZnO nanoparticles. From the UL-94V data, it was confirmed that the F2 and F3 samples passed the flame test and were rated as V-0. The results obtained in the present work clearly revealed that the synthesized samples can be used as efficient materials in fire-retardant coating technology.