• Title/Summary/Keyword: W-N 박막

Search Result 364, Processing Time 0.017 seconds

Spatially-resolved Photoluminescence Studies on Intermixing Effect of InGaAs Quantum Dot Structures Formed by AlAs Wet Oxidation and Thermal Annealing (AlAs 습식산화와 열처리로 인한 InGaAs 양자점 레이저 구조의 Intermixing효과에 관한 공간 분해 광학적 특성)

  • Hwang J.S.;Kwon B.J.;Kwack H.S.;Choi J.W.;Choi Y.H.;Cho N.K.;Cheon H.S.;Cho W.C.;Song J.D.;Choi W.J.;Lee J.I.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 2006
  • Optical characteristics of InGaAs quantum dot (QD) laser structures with an Al native oxide (AlOx) layer as a current-blocking layer were studied by means of photoluminescence (PL), PL excitation, and spatially-resolved micro-PL techniques. The InGaAs QD samples were first grown by molecular-beam epitaxy (MBE), and then prepared by wet oxidation and thermal annealing techniques. For the InGaAs QD structures treated by the wet oxidation and thermal annealing processes, a broad PL emission due to the intermixing effect of the AlOx layer was observed at PL emission energy higher than that of the non-intermixed region. We observed a dominant InGaAs QD emission at about 1.1 eV in the non-oxide AlAs region, while InGaAs QD-related emissions at about 1.16 eV and $1.18{\sim}1.20eV$ were observed for the AlOx and the SiNx regions, respectively. We conclude that the intermixing effect of the InGaAs QD region under an AlOx layer is stronger than that of the InGaAs QD region under a non-oxided AlAs layer.

Effects of the Introduction of UV Irradiation and Rapid Thermal Annealing Process to Sol-Gel Method Derived Ferroelectric Sr0.9Bi2.1Ta1.8Nb0.2O9 Thin Films on Crystallization and Dielectric/Electrical Properties (UV 노광과 RTA 공정의 도입이 Sol-Gel 법으로 제조한 강유전성 Sr0.9Bi2.1Ta1.8Nb0.2O9 박막의 결정성 및 유전/전기적 특성에 미치는 영향)

  • 김영준;강동균;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.7-15
    • /
    • 2004
  • The ferroelectric SBT thin films as a material of capacitors for non-volatile FRAMs have some problems that its remanent polarization value is relatively low and the crystallization temperature is quite high abovc 80$0^{\circ}C$. Therefore, in this paper, SBTN solution with S $r_{0.9}$B $i_{2.1}$T $a_{1.8}$N $b_{0.2}$$O_{9}$ composition was synthesized by sol-gel method. Sr(O $C_2$ $H_{5}$)$_2$, Bi(TMHD)$_3$, Ta(O $C_2$ $H_{5}$)$_{5}$and Nb(O $C_2$ $H_{5}$)$_{5}$ were used as precursors, which were dissolved in 2-methoxyethanol. SBTN thin films with 200 nm thickness were deposited on Pt/Ti $O_2$/ $SiO_2$/Si substrates by spin-coating. UV-irradiation in a power of 200 W for 10 min and rapid thermal annealing in a 5-Torr-oxygen ambient at 76$0^{\circ}C$ for 60 sec were used to promote crystallization. The films were well crystallized and fine-grained after annealing at $650^{\circ}C$ in oxygen ambient. The electrical characteristics of 2Pr=11.94 $\mu$C/$\textrm{cm}^2$, Ps+/Pr+=0.54 at the applied voltage of 5 V were obtained for a 200-nm-thick SBTN films. This results show that 2Pr values of the UV irradiated and rapid thermal annealed SBTN thin films at the applied voltage of 5 V were about 57% higher than those of no additional processed SBTN thin films. thin films.lms.s.s.

The Fabrication of Poly-Si Solar Cells for Low Cost Power Utillity (저가 지상전력을 위한 다결정 실리콘 태양전지 제작)

  • Kim, S.S.;Lim, D.G.;Shim, K.S.;Lee, J.H.;Kim, H.W.;Yi, J.
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.3-11
    • /
    • 1997
  • Because grain boundaries in polycrystalline silicon act as potential barriers and recombination centers for the photo-generated charge carriers, these defects degrade conversion effiency of solar cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatment, various grid pattern, selective wet etching for grain boundaries, buried contact metallization along grain boundaries, grid on metallic thin film. Pretreatment above $900^{\circ}C$ in $N_2$ atmosphere, gettering by $POCl_3$ and Al treatment for back surface field contributed to obtain a high quality poly-Si. To prevent carrier losses at the grain boundaries, we carried out surface treatment using Schimmel etchant. This etchant delineated grain boundaries of $10{\mu}m$ depth as well as surface texturing effect. A metal AI diffusion into grain boundaries on rear side reduced back surface recombination effects at grain boundaries. A combination of fine grid with finger spacing of 0.4mm and buried electrode along grain boundaries improved short circuit current density of solar cell. A ultra-thin Chromium layer of 20nm with transmittance of 80% reduced series resistance. This paper focused on the grain boundary effect for terrestrial applications of solar cells with low cost, large area, and high efficiency.

  • PDF

Ion Transmittance of Anodic Alumina for Ion Beam Nano-patterning (이온빔 나노 패터닝을 위한 양극산화 알루미나의 이온빔 투과)

  • Shin S. W.;Lee J-H;Lee S. G.;Lee J.;Whang C. N.;Choi I-H;Lee K. H.;Jeung W. Y.;Moon H.-C.;Kim T. G.;Song J. H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.97-102
    • /
    • 2006
  • Anodic alumina with self-organized and ordered nano hole arrays can be a good candidate of an irradiation mask to modify the properties of nano-scale region. In order to try using porous anodic alumina as a mask for ion-beam patterning, ion beam transmittance of anodic alumina was tested. 4 Um thick self-standing AAO templates anodized from Al bulk foil with two different aspect ratio, 200:1 and 100:1, were aligned about incident ion beam with finely controllable goniometer. At the best alignment, the transmittance of the AAO with aspect ratio of 200:1 and 100:1 were $10^{-8}\;and\;10^{-4}$, respectively. However transmittance of the thin film AAO with low aspect ratio, 5:1, were remarkably improved to 0.67. The ion beam transmittance of self-standing porous alumina with a thickness larger than $4{\mu}m$ is extremely low owing to high aspect ratio of nano hole and charging effect, even at a precise beam alignment to the direction of nano hole. $SiO_2$ nano dot array was formed by ion irradiation into thin film AAO on $SiO_2$ film. This was confirmed by scanning electron microscopy that the $SiO_2$ nano dot array is similar to AAO hole array.