• Title/Summary/Keyword: Vulnerability Index of Climate Change

Search Result 85, Processing Time 0.024 seconds

Vulnerability Assessment and Analysis of Gangwon Provincial Forest Sector in Response to Climate Change (기후변화 대비 강원 지역 산림부문 현황 분석 및 취약성 평가)

  • Chae, Hee-Mun;Lee, Hyun-Ju;Um, Gi-Jeung
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.2
    • /
    • pp.106-117
    • /
    • 2012
  • In an effort to analyze the impact of climate change, Gangwon provincial forest was divided into three sectors; forest ecology, forest disaster, and forest productivity and analysis of their current status from 2000 to 2009 and vulnerability assessment by climate change has been carried in this study. In case of vulnerability assessment, except for the forest ecology, forest disaster (forest fires and forest pests) and forest productivity sectors were analyzed in current status, the year of 2020, and 2050. It turned out that vulnerability of forest fires in the field of disaster would become worse and forest pests also would make more impact even though there is some variation in different areas. In case of the vulnerability of forest productivity there would be not a big difference in the future compared with current vulnerability. Systematic research on the sensitivity index used for vulnerability assessment is necessary since vulnerability assessment result greatly depends on the use of climate exposure index and adaptive capacity index.

Climate Change Adaptive Implementation Assessment Proposal for Local Governments Utilizing Vulnerability Index

  • Lee, Sangsin
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.1
    • /
    • pp.47-53
    • /
    • 2019
  • This study applies the concept of climate change vulnerability assessment in order to suggest climate change adaptation effects in a quantitative manner, given that previous studies have hitherto rely on qualitative assessment, as climate change adaptive policies are currently being implemented by local governments of Korea. The vulnerability assessment tool used in this study is VESTAP ("Vulnerability assESsment Tool to build a climate change Adaptation Plan"), which was developed by the Korea Adaptation Center for Climate Change (KACCC), and applied to gauge the vulnerability of pine trees to diseases and pests within Chungcheongnam-do. The climate change adaptation project for vulnerability improvement was assessed only in terms of forest disaster prevention and change in regional climate change vulnerabilities within 16 regions of Chungcheongnam-do as the result of 2016 Climate Change Adaptation Project (Forest Disaster Prevention Project). As a result, it was observed that climate change adaptive capacity has improved according to change in the area of forestland with disaster prevention, and the vulnerability indicator decreased, confirming the impact of the climate change adaptation (forest disaster prevention) project. Also, analysis of regional climate change adaptation project scales and change in vulnerabilities allowed us to determine the regional propriety of climate change adaptation (forest disaster prevention) projects launched in 2016.

Vulnerability Assessment of Human Health Sector due to Climate Change: Focus on Ozone (기후변화에 따른 보건 분야의 취약성 평가: O3을 중심으로)

  • Lee, Jae-Bum;Lee, Hyun-Ju;Moon, Kyung-Jung;Hong, Sung-Chul;Kim, Deok-Rae;Song, Chang-Keun;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.22-38
    • /
    • 2012
  • Adaptation of climate change is necessary to avoid unexpected impacts of climate change caused by human activities. Vulnerability refers to the degree to which system cannot cope with impacts of climate change, encompassing physical, social and economic aspects. Therefore the quantification of climate change impacts and its vulnerability is needed to identify vulnerable regions and to setup the proper strategies for adaptation. In this study, climate change vulnerability is defined as a function of climate exposure, sensitivity, and adaptive capacity. Also, we identified regions vulnerable to ozone due to climate change in Korea using developed proxy variables of vulnerability of regional level. 18 proxy variables are selected through delphi survey to assess vulnerability over human health sector for ozone concentration change due to climate change. Also, we estimate the weighting score of proxy variables from delphi survey. The results showed that the local regions with higher vulnerability index in the sector of human health are Seoul and Daegu, whereas regions with lower one are Jeollanam-do, Gyeonggi-do, Gwangju, Busan, Daejeon, and Gangwon-do. The regions of high level vulnerability are mainly caused by their high ozone exposure. We also assessed future vulnerability according to the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2, A1FI, A1T, A1B, B2, and B1 scenarios in 2020s, 2050s and 2100s. The results showed that vulnerability increased in all scenarios due to increased ozone concentrations. Especially vulnerability index is increased by approximately 2 times in A1FI scenarios in the 2020s. This study could support regionally adjusted adaptation polices and the quantitative background of policy priority as providing the information on the regional vulnerability of ozone due to climate change in Korea.

Vulnerability Assessment of Rice Production by Main Disease and Pest of Rice Plant to Climate Change (기후변화에 따른 주요 벼 병해충에 의한 벼 생산의 취약성평가)

  • Kim, Myung-Hyun;Bang, Hea-Son;Na, Young-Eun;Kim, Miran;Oh, Young-Ju;Kang, Kee-Kyung;Cho, Kwang-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.147-157
    • /
    • 2013
  • Rice is a main crop and rice field is the most important farmland in Korea. This study was conducted to propose the methodology assessing impact and vulnerability on rice production by climate change at the regional and national level in Korea. We evaluated a vulnerability of rice paddy according to the outbreak of a main disease and pest of a rice plant. As results, Jeju-do, Gyeongsangnam-do, and Jeollanam-do were more vulnerable area than others. In contrast, the southern central region including Gyeonggi-do was less vulnerable than others. The vulnerable index was significantly higher in 2050s (0.5589) than in present (0.3500). This result showed that the vulnerable to the disease and pest enlarge in the future. The adaptive capacity highly contributed to the vulnerability assessment index. The daily maximum temperature of June and the daily average temperature from May to August also contributed the climate exposure index. The area of occurring sheath blight, rice leaf blast and striped rice borer was related to the system sensitivity index. The ability of water supply (readjustment area of arable land per paddy field area) and rice production technique (rice yield per hectare) were the highly contributed variables to the adaption capacity index.

Health Vulnerability Assessment for PM10 due to Climate Change in Incheon (인천지역 기후변화에 따른 미세먼지의 건강 취약성 평가)

  • Yoo, Heejong;Kim, Jongkon;Shin, Jaewon;Kim, Youngju;Min, Sungeun;Jegal, Daesung;Bang, Kiin;Lee, Sungmo
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.3
    • /
    • pp.240-246
    • /
    • 2017
  • Objectives: This study was conducted to evaluate the vulnerability of the human health sector to $PM_{10}$ due to climate change in Incheon over the period of 2005-2014. Methods: Vulnerability to $PM_{10}$ consists of the three categories of climate exposure, sensitivity, and adaptive capacity. The indexes for climate exposure and sensitivity indicate positive effects, while adaptive capacity shows a negative effect on vulnerability to $PM_{10}$. The variables in each category were standardized by the rescaling method, and respective relative regional vulnerability was analyzed through the vulnerability index calculation formula of the Intergovernmental Panel on Climate Change. Results: Regions with a high exposure index were the western and northern urban areas with industrial complexes adjacent to a highway, including Bupyong-gu and Seo-gu. Major factors determining the climate exposure index were the $PM_{10}$ concentration, days of $PM_{10}$ >= $100{\mu}g/m^3$, and $PM_{10}$ emissions. The regions showing a high sensitivity index were urban regions with high populations; these commonly had a high mortality rate for related diseases and vulnerable populations. Conclusions: This study is able to support regionally adjusted adaptation policies and the quantitative background of policy priority since it provides information on the regional health vulnerability to $PM_{10}$ due to climate change in Incheon.

A Study on the Vulnerability Assessment for Agricultural Infrastructure using Principal Component Analysis (주성분 분석을 이용한 농업생산기반의 재해 취약성 평가에 관한 연구)

  • Kim, Sung Jae;Kim, Sung Min;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The purpose of this study was to evaluate climate change vulnerability over the agricultural infrastructure in terms of flood and drought using principal component analysis. Vulnerability was assessed using vulnerability resilience index (VRI) which combines climate exposure, sensitivity, and adaptive capacity. Ten flood proxy variables and six drought proxy variables for the vulnerability assessment were selected by opinions of researchers and experts. The statistical data on 16 proxy variables for the local governments (Si, Do) were collected. To identify major variables and to explain the trend in whole data set, principal component analysis (PCA) was conducted. The result of PCA showed that the first 3 principal components explained approximately 83 % and 89 % of the total variance for the flood and drought, respectively. VRI assessment for the local governments based on the PCA results indicated that provinces where having the relatively large cultivation areas were categorized as vulnerable to climate change.

Sensitivity analysis of flood vulnerability index of levee according to climate change (기후변화에 따른 제방의 홍수취약성지수 민감도 분석)

  • Lee, Hoo Sang;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1161-1169
    • /
    • 2018
  • In this study, a new methodology was proposed to evaluate the flood vulnerability of river levee and to investigate the effect on the levee where the water level changes according to climate change. The stability of levee against seepage was evaluated using SEEP/W model which is two-dimensional groundwater infiltration model. In addition to the infiltration behavior, it is necessary to analyze the vulnerability of the embankment considering the environmental conditions of the river due to climate change. In this study, the levee flood vulnerability index (LFVI) was newly developed by deriving the factors necessary for the analysis of the levee vulnerability. The size of river levee was investigated by selecting the target area. The selected levees were classified into upstream part, midstream part and downstream part at the nearside of Seoul in the Han river, and the safety factor of the levee was analyzed by applying the design flood level of the levee. The safety ratio of the levee was analyzed by applying the design flood level considering the current flood level and the scenario of climate change RCP8.5. The degree of change resulting from climate change was identified for each factor that forms the levee flood vulnerability index. By using the levee flood vulnerability index value utilizing these factors comprehensively, it was finally possible to estimate the vulnerability of levee due to climate change.

Analysis of Climate Characteristics Observed over the Korean Peninsula for the Estimation of Climate Change Vulnerability Index (기후변화 취약성 지수 산출을 위한 한반도 관측 기후 특성 분석)

  • Nam, Ki-Pyo;Kang, Jeong-Eon;Kim, Cheol-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.891-905
    • /
    • 2011
  • Climate vulnerability index is usually defined as a function of the climate exposure, sensitivity, and adaptive capacity, which requires adequate selection of proxy variables of each variable. We selected and used 9 proxy variables related to climate exposure in the literature, and diagnosed the adequacy of them for application in Korean peninsula. The selected proxy variables are: four variables from temperature, three from precipitation, one from wind speed, and one from relative humidity. We collected climate data over both previous year (1981~2010) and future climate scenario (A1B scenario of IPCC SERES) for 2020, 2050, and 2100. We introduced the spatial and temporal diagnostic statistical parameters, and evaluated both spatial and time variabilities in the relative scale. Of 9 proxy variables, effective humidity indicated the most sensitive to climate change temporally with the biggest spatial variability, implying a good proxy variable in diagnostics of climate change vulnerability in Korea. The second most sensitive variable is the frequency of strong wind speed with a decreasing trend, suggesting that it should be used carefully or may not be of broad utility as a proxy variable in Korea. The A1B scenario of future climate in 2020, 2050 and 2100 matches well with the extension of linear trend of observed variables during 1981~2010, indicating that, except for strong wind speed, the selected proxy variables can be effectively used in calculating the vulnerability index for both past and future climate over Korea. Other local variabilities for the past and future climate in association with climate exposure variables are also discussed here.

A Study on Vulnerability Assessment to Climate Change in Regional Fisheries of Korea (국내 수산 부문의 지역별 기후변화 취약성 평가 연구)

  • Lee, Beo-Dul;Kim, Bong-Tae;Cho, Yong-Sung
    • The Journal of Fisheries Business Administration
    • /
    • v.42 no.1
    • /
    • pp.57-70
    • /
    • 2011
  • Fisheries are subject to unexpected weather condition. While some change of it may be positive for some fisheries, the current state suggests that the effects will be undesirable for many fisheries. The aim of this study is to assess the vulnerability to climate change in 11 regional fisheries of Korea using the framework of IPCC. The vulnerability assessment depends upon the interrelation of three key elements; exposure, sensitivity and adaptive capacity, which were derived from Analytical Hierarchy Process method in this study. These elements would contribute to comprehend relative importance at the regional characteristics of fisheries. We compared the vulnerability index of 11 regional fisheries so as to look for strategies and adaptation methods to the impacts of potential climate change. Jeoun-Nam, Kyeong-Nam, and Jeju are identified as the most vulnerable provinces to climate change on their fisheries because they have high level of sensitivity to predicted climate change and relatively low adaptive capacity. The relatively low vulnerability of Ulsan, Gyeonggi reflects high financial independence, well-equipped infrastructure, social capital in these regions. Understanding of vulnerability to climate change suggests future research directions. This paper will provide a guide to local policy makers and fisheries managers about vulnerability and adaptation planning to climate change.

Climate Change Vulnerability Assessment of Cool-Season Grasslands Based on the Analytic Hierarchy Process Method

  • Lee, Bae Hun;Cheon, Dong Won;Park, Hyung Soo;Choi, Ki Choon;Shin, Jeong Seop;Oh, Mi Rae;Jung, Jeong Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.189-197
    • /
    • 2021
  • Climate change effects are particularly apparent in many cool-season grasslands in South Korea. Moreover, the probability of climate extremes has intensified and is expected to increase further. In this study, we performed climate change vulnerability assessments in cool-season grasslands based on the analytic hierarchy process method to contribute toward effective decision-making to help reduce grassland damage caused by climate change and extreme weather conditions. In the analytic hierarchy process analysis, vulnerability was found to be influenced in the order of climate exposure (0.575), adaptive capacity (0.283), and sensitivity (0.141). The climate exposure rating value was low in Jeju-do Province and high in Daegu (0.36-0.39) and Incheon (0.33-0.5). The adaptive capacity index showed that grassland compatibility (0.616) is more important than other indicators. The adaptation index of Jeollanam-do Province was higher than that of other regions and relatively low in Gangwon-do Province. In terms of sensitivity, grassland area and unused grassland area were found to affect sensitivity the most with index values of 0.487 and 0.513, respectively. The grassland area rating value was low in Jeju-do and Gangwon-do Province, which had large grassland areas. In terms of vulnerability, that of Jeju-do Province was lower and of Gyeongsangbuk-do Province higher than of other regions. These results suggest that integrating the three aspects of vulnerability (climate exposure, sensitivity, and adaptive capacity) may offer comprehensive and spatially explicit adaptation plans to reduce the impacts of climate change on the cool-season grasslands of South Korea.